Skip to content
Greg V edited this page Nov 3, 2024 · 3 revisions

Document Management & Summarization Platform

image

Software Requirements Document

This document is normally owned by a Tech Lead (TL) and Engineering Manager (EM) in partnership with a Product Manager (PM) and a Data Scientist (DS). Also see the PM artifact around Product Market Fit here

Version 1.0 - November 2024

1. Problem Statement

Organizations working in low-bandwidth environments struggle to effectively share and summarize documents with their stakeholders. Current solutions either require high bandwidth or lack the ability to intelligently compress and summarize content. There's a need for a platform that can make documents accessible and digestible in resource-constrained environments while maintaining document organization and accessibility.

2. Expected Impact

  • Reduce bandwidth usage by 70% through intelligent compression and summarization
  • Decrease time spent by staff managing and sharing documents by 50%
  • Increase document accessibility in low-connectivity areas by providing offline capabilities
  • Enable organizations to reach 3x more beneficiaries through improved content delivery

3. Success Metrics & Goals

3.1 Key Performance Indicators (KPIs)

  • Monthly Active Users (MAU)
  • Document processing time
  • Average bandwidth saved per document
  • User engagement with summaries
  • Time saved in document management
  • Number of organizations onboarded

3.2 Target Goals (6 months post-launch)

  • 1,000+ MAU
  • 90% of documents processed in <60 seconds
  • Average 65% reduction in document size
  • 80% of users accessing summaries before full documents
  • 100+ organizations onboarded

4. Technical Architecture

4.1 Technology Stack

  • Backend: Python (FastAPI)
  • Frontend: Next.js
  • Database: PostgreSQL
  • Document Storage: Integration with Google Drive & Dropbox APIs
  • AI/ML: Hugging Face Transformers for summarization
  • Deployment: GitHub Actions + Fly.io
  • Monitoring: Grafana + Prometheus

4.2 Core Components

4.2.1 Document Processing Service

# High-level architecture for document processing
class DocumentProcessor:
    async def process(self, document):
        compressed = await self.compress(document)
        summary = await self.summarize(document)
        metadata = await self.extract_metadata(document)
        return ProcessedDocument(compressed, summary, metadata)

4.2.2 Storage Integration

  • Abstract storage interface supporting multiple providers
  • Initial support for Google Drive and Dropbox
  • Local cache for frequently accessed documents

4.2.3 API Structure

/api/v1/
  /documents
    POST /upload
    GET /{id}
    GET /{id}/summary
    PUT /{id}/metadata
  /organizations
    POST /
    GET /{id}/usage
  /auth
    POST /login
    POST /register

5. Freemium Model Implementation

5.1 Free Tier Limitations

  • 100 documents per month
  • Maximum document size: 10MB
  • Basic summarization features
  • Single organization
  • 5 team members maximum

5.2 Premium Features

  • Unlimited documents
  • Maximum document size: 50MB
  • Advanced summarization with custom training
  • Multiple organizations
  • Unlimited team members
  • Priority processing
  • API access

5.3 Usage Tracking

class UsageTracker:
    async def track_usage(self, org_id: str, feature: str):
        current = await self.get_current_usage(org_id)
        if current.exceeds_free_tier():
            return PaymentRequired()
        await self.increment_usage(org_id, feature)

6. Scalability & Team Collaboration

6.1 Code Organization

src/
  /api           # FastAPI routes
  /services      # Business logic
  /models        # Data models
  /processors    # Document processing
  /storage       # Storage integrations
  /auth          # Authentication
  /utils         # Shared utilities
tests/
  /unit
  /integration
  /e2e

6.2 Development Workflow

  1. Feature branches from develop
  2. PR review required
  3. Automated testing via GitHub Actions
  4. Staging deployment for review
  5. Merge to main triggers production deployment

6.3 Team Responsibilities Split

Team A: Core Platform

  • Document processing pipeline
  • Storage integration
  • API development
  • Database management

Team B: ML & Optimization

  • Summarization algorithms
  • Compression optimization
  • Performance monitoring
  • ML model management

7. Phase 1 Implementation Plan

7.1 Sprint 1-2: Foundation

  • Set up project structure
  • Implement basic auth
  • Create storage abstraction
  • Basic document upload/download

7.2 Sprint 3-4: Core Features

  • Document processing pipeline
  • Basic summarization
  • Usage tracking
  • API documentation

7.3 Sprint 5-6: Integration

  • Google Drive/Dropbox integration
  • Compression optimization
  • Frontend development
  • Testing & performance optimization

8. Technical Considerations

8.1 Security

  • JWT-based authentication
  • Role-based access control
  • Document encryption at rest
  • Audit logging

8.2 Performance

  • Document caching strategy
  • Background processing for large documents
  • CDN integration for static assets
  • Database indexing strategy

8.3 Monitoring

  • Error tracking via Sentry
  • Performance monitoring via Grafana
  • Usage analytics
  • Cost tracking per organization

9. API Documentation Example

@router.post("/documents/upload")
async def upload_document(
    file: UploadFile,
    background_tasks: BackgroundTasks,
    current_user: User = Depends(get_current_user)
):
    """
    Upload a document for processing.
    
    Returns:
        document_id: str
        status: ProcessingStatus
        estimated_time: int
    """
    # Implementation

10. Future Considerations

10.1 Potential Extensions

  • Offline mode support
  • Mobile app development
  • Custom ML model training
  • Batch processing
  • Integration with popular LMS platforms

10.2 Scaling Considerations

  • Horizontal scaling of processing workers
  • Caching layer implementation
  • Database sharding strategy
  • Multi-region deployment

11. Document Similarity & Grouping System

11.1 Document Vectorization Pipeline

class DocumentVectorizer:
    def __init__(self):
        # Using sentence-transformers for document embedding
        self.model = SentenceTransformer('all-MiniLM-L6-v2')
        self.file_processors = {
            'pdf': PDFProcessor(),
            'ppt': PPTProcessor(),
            'jpg': ImageProcessor(),  # Uses OCR for text extraction
        }
    
    async def process_document(self, file_path: str, file_type: str) -> DocumentVector:
        # Extract text based on file type
        text = await self.file_processors[file_type].extract_text(file_path)
        # Generate embedding
        embedding = self.model.encode(text)
        return DocumentVector(
            file_path=file_path,
            embedding=embedding,
            metadata=await self.extract_metadata(file_path)
        )

11.2 Clustering System

11.2.1 Real-time Clustering

class DocumentClusterer:
    def __init__(self):
        self.index = faiss.IndexFlatL2(384)  # Vector dimension
        self.document_map = {}
    
    async def add_document(self, doc_vector: DocumentVector):
        # Add to FAISS index
        self.index.add(doc_vector.embedding.reshape(1, -1))
        # Store mapping
        self.document_map[len(self.document_map)] = doc_vector.file_path
        # Trigger re-clustering if needed
        await self.maybe_recluster()
    
    async def find_similar(self, query_vector: np.array, k: int = 5):
        distances, indices = self.index.search(query_vector.reshape(1, -1), k)
        return [
            {
                'file_path': self.document_map[idx],
                'similarity_score': float(dist)
            }
            for idx, dist in zip(indices[0], distances[0])
        ]

11.3 Auto-Organization Features

11.3.1 Smart Folders

  • Automatically creates and maintains virtual folders based on document similarity
  • Updates in real-time as new documents are added
  • Configurable similarity thresholds
class SmartFolder:
    def __init__(self, name: str, similarity_threshold: float = 0.85):
        self.name = name
        self.threshold = similarity_threshold
        self.centroid = None
        self.documents = []
    
    async def maybe_add_document(self, doc_vector: DocumentVector) -> bool:
        if not self.centroid:
            self.centroid = doc_vector.embedding
            self.documents.append(doc_vector)
            return True
        
        similarity = cosine_similarity(self.centroid, doc_vector.embedding)
        if similarity >= self.threshold:
            self.update_centroid(doc_vector)
            self.documents.append(doc_vector)
            return True
        return False

11.3.2 Topic Modeling

class TopicModeler:
    def __init__(self):
        self.model = BERTopic()
    
    async def suggest_folder_names(self, documents: List[str]) -> List[str]:
        topics, _ = self.model.fit_transform(documents)
        return [self.model.get_topic_info(topic).Name for topic in set(topics)]

11.4 Integration with Storage Providers

11.4.1 Google Drive Integration

class GoogleDriveOrganizer:
    async def create_smart_folder(self, folder_name: str, file_ids: List[str]):
        # Create a new folder
        folder_metadata = {
            'name': folder_name,
            'mimeType': 'application/vnd.google-apps.folder',
            'properties': {'isSmartFolder': 'true'}
        }
        folder = self.service.files().create(
            body=folder_metadata,
            fields='id'
        ).execute()
        
        # Create shortcuts to files in the smart folder
        for file_id in file_ids:
            self.service.files().create(
                body={
                    'mimeType': 'application/vnd.google-apps.shortcut',
                    'shortcutDetails': {'targetId': file_id},
                    'parents': [folder['id']]
                }
            ).execute()

11.4.2 Dropbox Integration

class DropboxOrganizer:
    async def create_smart_folder(self, folder_name: str, file_paths: List[str]):
        # Create a new folder
        self.dbx.files_create_folder_v2(f"/{folder_name}")
        
        # Create symlinks in Dropbox
        for file_path in file_paths:
            self.dbx.files_copy_v2(
                from_path=file_path,
                to_path=f"/{folder_name}/{os.path.basename(file_path)}"
            )

11.5 User Interface Considerations

11.5.1 Similarity Visualization

  • Interactive force-directed graph showing document relationships
  • Drag-and-drop interface for manual organization
  • Color coding by document type and similarity strength

11.5.2 Smart Folder Management

interface SmartFolderConfig {
  name: string;
  similarityThreshold: number;
  autoUpdateEnabled: boolean;
  includedFileTypes: string[];
  excludedTerms: string[];
  parentFolderId?: string;
}

11.6 Performance Optimization

11.6.1 Batch Processing

  • Process multiple documents in parallel
  • Update similarity indexes in batches
  • Cached similarity scores for frequently accessed documents

11.6.2 Index Management

class SimilarityIndexManager:
    async def optimize_index(self):
        # Periodically rebuild index for optimal performance
        if self.index.ntotal > 1000:
            new_index = faiss.IndexIVFFlat(
                self.index, 
                num_clusters=int(math.sqrt(self.index.ntotal))
            )
            self.index = new_index
Clone this wiki locally