This repository has been archived by the owner on Apr 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
pytorch_test.py
119 lines (87 loc) · 3.87 KB
/
pytorch_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Copyright (C) 2018-2021 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
#
import torch
from torchvision import datasets, models, transforms
from torch import nn
from torch import optim
from torch.utils.data import DataLoader
import hpopt
def my_trainer(config, full_dataset, device='cpu'):
lr = config['params']['lr']
bs = config['params']['bs']
print(f'train model start! lr : {lr} / bs : {bs}')
trainset = hpopt.createHpoDataset(full_dataset, config)
trainset, validset = torch.utils.data.random_split(trainset,
[len(trainset) - int(len(trainset)*0.2), int(len(trainset)*0.2)])
model = models.resnet18(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, 10)
model.to(device)
optimizer = optim.Adam(filter(lambda p : p.requires_grad, model.parameters()), lr=lr)
critic = nn.CrossEntropyLoss()
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 10, 2)
data_loader = {'train' : DataLoader(trainset, batch_size=bs, shuffle = True),
'val' : DataLoader(validset, batch_size=bs, shuffle = True)}
for current_epoch in range(config["iterations"]):
print(f'\rEpoch {current_epoch+1} / {config["iterations"]}')
epoch_loss = 0.0
epoch_acc = 0.0
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
idx = 0
running_loss = 0.0
running_correct = 0
for inputs, labels in data_loader[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
loss = critic(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
print(f'{idx/len(data_loader[phase])*100:.2f}%', end='')
idx += 1
print('\r', end='')
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_correct += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / (len(trainset) if phase == 'train' else len(validset))
epoch_acc = running_correct.double() / (len(trainset) if phase == 'train' else len(validset))
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
if hpopt.report(config=config, score=epoch_acc.item()) == hpopt.Status.STOP:
break
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,), )
])
full_dataset = datasets.SVHN('./dataset/files',
split ='train',
transform=transform,
download=True)
hp_configs = {"lr": hpopt.search_space("loguniform", [0.0001, 0.1]),
"bs": hpopt.search_space("qloguniform", [8, 256, 4])}
my_hpo = hpopt.create(save_path='./tmp/my_hpo_resnet',
search_alg="bayes_opt",
search_space=hp_configs,
ealry_stop="median_stop",
num_init_trials=5,
#num_trials=20,
#max_iterations=10,
#subset_ratio=1.0,
#image_resize=[50, 50],
expected_time_ratio=1,
num_full_iterations=10,
full_dataset_size=len(full_dataset))
while True:
config = my_hpo.get_next_sample()
if config is None:
break
my_trainer(config, full_dataset, device='cuda:0')
print("best hp: ", my_hpo.get_best_config())