forked from mkallipo/affiliation-matching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pubmed.py
executable file
·354 lines (241 loc) · 11.8 KB
/
pubmed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import pandas as pd
from pandas import json_normalize
import re
import unicodedata
from collections import defaultdict
import tarfile
import logging
import html
import xml.etree.ElementTree as ET
import json
import xmltodict
import requests
import gzip
from io import BytesIO
from bs4 import BeautifulSoup
import os
from collections import defaultdict
from concurrent.futures import ProcessPoolExecutor,wait,ALL_COMPLETED
import pickle
import sys
import Levenshtein
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from helper_functions import *
from main_functions import *
with open('dictionaries/dix_acad.pkl', 'rb') as f:
dix_acad = pickle.load(f)
with open('dictionaries/dix_mult.pkl', 'rb') as f:
dix_mult = pickle.load(f)
with open('dictionaries/dix_city.pkl', 'rb') as f:
dix_city = pickle.load(f)
with open('dictionaries/dix_country.pkl', 'rb') as f:
dix_country = pickle.load(f)
def create_df(articleList):
df = pd.DataFrame(articleList)
final = []
key_errors = []
for i in range(len(df)):
line = df['Article'].iloc[i]
# Remove all occurrences of '\n'
line = line.replace('\n', '')
final.append(json.loads(json.dumps(xmltodict.parse(line))))
ids = []
for i in range(len(df)):
try:
if type(final[i]['PubmedArticle']['PubmedData']['ArticleIdList']['ArticleId']) == list:
ids.append(final[i]['PubmedArticle']['PubmedData']['ArticleIdList']['ArticleId'])
else:
ids.append([final[i]['PubmedArticle']['PubmedData']['ArticleIdList']['ArticleId']])
except KeyError as e:
print(f"KeyError: {e} occurred for index {i}")
key_errors.append(i)
dois = []
for i in range(len(df)):
doisi= []
for j in range(len(ids[i])):
try:
if ids[i][j]['@IdType'] == 'doi':
doisi.append(ids[i][j]['#text'])
except KeyError as e:
print(f"KeyError: {e} occurred for index {i}")
key_errors.append(i)
dois.append(doisi)
affList = []
for i in range(len(df)):
affList_i = []
try:
fi = final[i]['PubmedArticle']['MedlineCitation']['Article']['AuthorList']['Author']
except KeyError as e:
print(f"KeyError: {e} occurred for index {i}")
key_errors.append(i)
if type(fi) == dict:
try:
if type(fi['AffiliationInfo']) == dict:
affList_i.append(fi['AffiliationInfo']['Affiliation'])
else:
for j in range(len(fi['AffiliationInfo'])):
affList_i.append(fi['AffiliationInfo'][j]['Affiliation'])
except KeyError as e:
print(f"KeyError: {e} occurred for index {i}")
key_errors.append(i)
else:
for m in range(len(fi)):
if 'AffiliationInfo' in list(fi[m].keys()):
if type(fi[m]['AffiliationInfo']) == dict:
affList_i.append(fi[m]['AffiliationInfo']['Affiliation'])
else:
for j in range(len(fi[m]['AffiliationInfo'])):
affList_i.append(fi[m]['AffiliationInfo'][j]['Affiliation'])
affList.append(list(set(affList_i)))
df['DOI'] = dois
df['Affiliations'] = affList
indices = []
for i in range(len(df)):
if len(dois[i])>0:
indices.append(i)
indices_final = [i for i in indices if i not in key_errors]
df_final = (df.iloc[indices_final]).reset_index()
df_final.drop(columns = 'index', inplace = True)
doi_string = [x[0] for x in list(df_final['DOI'])]
df_final['DOI'] = doi_string
return df_final
url = "https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
links = soup.find_all("a")
file_names = []
for link in links:
href = link.get("href")
if href:
# Extract the file name from the URL
file_name = os.path.basename(href)
if file_name.endswith(".gz"):
file_names.append(file_name)
url_list = [url+file for file in file_names]
def xml_to_json(xml):
response = requests.get(url_list[xml])
# Create a BytesIO object from the compressed content
compressed_content = BytesIO(response.content)
# Decompress the content using gzip
with gzip.GzipFile(fileobj=compressed_content) as decompressed_content:
# Now you have the decompressed content in 'decompressed_content'
# You can parse it as XML using ElementTree or any other XML parsing library
root = ET.parse(decompressed_content).getroot()
# Process the XML content as needed
article_list = []
# Iterate over the Article elements
for article in root.iter('PubmedArticle'):
# Find the AffiliationInfo element within each Article
affiliation_info = article.find('.//AffiliationInfo')
if affiliation_info is not None:
# Extract the text within the Article element
article_text = ET.tostring(article, encoding='unicode')
article_list.append({'Article': article_text})
pubmedDF = create_df(article_list)
if len(pubmedDF)>0:
# continue
uniqueAff = []
remove_rows = []
for i in range(len(pubmedDF)):
try:
uniqueAff.append(list(set(x.lower() for x in pubmedDF['Affiliations'].iloc[i])))
except AttributeError as e:
print(f'AttributeError {e} at index {i}')
uniqueAff.append(list(set(x for x in pubmedDF['Affiliations'].iloc[i])))
remove_rows.append(i)
pubmedDF['Unique affiliations'] = uniqueAff
doi_df = pubmedDF[['DOI', 'Unique affiliations']].copy()
doi_df = doi_df.drop(remove_rows)
doi_df.reset_index(inplace = True)
academia_df = create_df_algorithm(doi_df)
if len(academia_df)>0:
result = Aff_Ids(len(academia_df), academia_df,dix_acad, dix_mult, dix_city, dix_country, 0.7,0.82)
if len(result)>0:
affs_match = result[['Original affiliations','Matched organizations', 'unique ROR']]
dict_aff_open = {x: y for x, y in zip(result['Original affiliations'], result['Matched organizations'])}
dict_aff_id = {x: y for x, y in zip(result['Original affiliations'], result['ROR'])}
#dict_aff_score = {x: y for x, y in zip(result['Original affiliations'], result['Similarity score'])}
dict_aff_score = {}
for i in range(len(result)):
if type(result['Similarity score'].iloc[i]) == list:
dict_aff_score[result['Original affiliations'].iloc[i]] = result['Similarity score'].iloc[i]
else:
dict_aff_score[result['Original affiliations'].iloc[i]] = [result['Similarity score'].iloc[i]]
pids = []
for i in range(len(doi_df)):
pidsi = []
for aff in doi_df['Unique affiliations'].iloc[i]:
if aff in list(dict_aff_id.keys()):
pidsi = pidsi + dict_aff_id[aff]
# elif 'unmatched organization(s)' not in pidsi:
# pidsi = pidsi + ['unmatched organization(s)']
pids.append(pidsi)
names = []
for i in range(len(doi_df)):
namesi = []
for aff in doi_df['Unique affiliations'].iloc[i]:
if aff in list(dict_aff_open.keys()):
try:
namesi = namesi + dict_aff_open[aff]
except TypeError:
namesi = namesi + [dict_aff_open[aff]]
names.append(namesi)
scores = []
for i in range(len(doi_df)):
scoresi = []
for aff in doi_df['Unique affiliations'].iloc[i]:
if aff in list(dict_aff_score.keys()):
scoresi = scoresi + dict_aff_score[aff]
scores.append(scoresi)
doi_df['Matched organizations'] = names
doi_df['ROR'] = pids
doi_df['Scores'] = scores
unmatched = [i for i in range(len(doi_df)) if doi_df['Matched organizations'].iloc[i] == []]
matched = [i for i in range(len(doi_df)) if i not in unmatched]
final_df0 = doi_df.iloc[matched].copy()
final_df0.reset_index(inplace = True)
final_df = final_df0[['DOI',"Unique affiliations",'Matched organizations','ROR', 'Scores']].copy()
def update_Z(row):
if len(row['ROR']) == 0 or len(row['Scores']) == 0:
return []
new_Z = []
for ror, score in zip(row['ROR'], row['Scores']):
entry = {'RORid': ror, 'Confidence': score}
new_Z.append(entry)
return new_Z
matching = final_df.apply(update_Z, axis=1)
unique_matching = []
for x in matching:
list_of_dicts = x
max_values = {}
result_list = []
for d in list_of_dicts:
value1 = d['RORid']
value2 = d['Confidence']
# Check if value1 is already in max_values dictionary
if value1 in max_values:
# If value2 is greater, update max_values
if value2 > max_values[value1]:
max_values[value1] = value2
# Replace the dictionary in the result_list with the one with higher value2
result_list = [item for item in result_list if item['RORid'] != value1]
result_list.append(d)
else:
# If value1 is not in max_values, add it with its value2
max_values[value1] = value2
result_list.append(d)
unique_matching.append(result_list)
final_df['Matchings'] = matching
final_df_short = final_df[['Unique affiliations','Matched organizations','ROR','Scores']]
# 3. JSON [Final output]
doi_df_output = final_df[['DOI','Matchings']]
doi_json = doi_df_output.to_json(orient='records', lines=True)
filename = f'file{xml}.json'
with open("pubmed-output/" + filename, 'w') as f:
f.write(doi_json)
numberOfThreads = int(sys.argv[1])
executor = ProcessPoolExecutor(max_workers=numberOfThreads)
futures = [executor.submit(xml_to_json, xml) for xml in range(0, len(url_list))]
done, not_done = wait(futures)
print(not_done)