-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathexample_usage.py
33 lines (24 loc) · 1008 Bytes
/
example_usage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from tokenizer import SimpleTokenizer
from model import CLIPImage, CLIPText
import tensorflow as tf
from lucid.misc.io import load
import numpy as np
def imresize(img, size, scale=255):
from PIL import Image
im = Image.fromarray((img*scale).astype(np.uint8) )
return np.array(im.resize(size, Image.BICUBIC)).astype(np.float32)/scale
tokenizer = SimpleTokenizer()
tf.reset_default_graph()
inp_text, T_text = CLIPText().load()
inp_img, T_img = CLIPImage().load()
sess = tf.Session()
captions = ["This is a dog", "This is a cat", "This is a dog and a cat"]
tokens = []
for caption in captions:
tokens.append(tokenizer.tokenize(caption)[0])
img = imresize(load("https://openaipublic.blob.core.windows.net/clarity/dog_cat.jpeg"), [288,288])
text_embd = sess.run(T_text("text_post/l2_normalize"), {inp_text: tokens})
img_embd = sess.run(T_img("l2_normalize"), {inp_img: [img]})
scores = (text_embd @ img_embd.T)[:,0]
for score, caption in zip(scores, captions):
print(caption, score)