-
Notifications
You must be signed in to change notification settings - Fork 553
/
Copy pathyolov5u_m_mask-refine_syncbn_fast_8xb16-300e_coco.py
79 lines (70 loc) · 2.32 KB
/
yolov5u_m_mask-refine_syncbn_fast_8xb16-300e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
_base_ = './yolov5u_s_mask-refine_syncbn_fast_8xb16-300e_coco.py'
# This config will refine bbox by mask while loading annotations and
# transforming after `YOLOv5RandomAffine`
# ========================modified parameters======================
deepen_factor = 0.67
widen_factor = 0.75
affine_scale = 0.9
mixup_prob = 0.1
copypaste_prob = 0.1
# =======================Unmodified in most cases==================
img_scale = _base_.img_scale
pre_transform = _base_.pre_transform
last_transform = _base_.last_transform
model = dict(
backbone=dict(
deepen_factor=deepen_factor,
widen_factor=widen_factor,
),
neck=dict(
deepen_factor=deepen_factor,
widen_factor=widen_factor,
),
bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
mosaic_affine_transform = [
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(type='YOLOv5CopyPaste', prob=copypaste_prob),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
max_aspect_ratio=100.,
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
# img_scale is (width, height)
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114),
min_area_ratio=_base_.min_area_ratio,
use_mask_refine=_base_.use_mask2refine)
]
train_pipeline = [
*pre_transform, *mosaic_affine_transform,
dict(
type='YOLOv5MixUp',
prob=mixup_prob,
pre_transform=[*pre_transform, *mosaic_affine_transform]),
*last_transform
]
train_pipeline_stage2 = [
*pre_transform,
dict(type='YOLOv5KeepRatioResize', scale=img_scale),
dict(
type='LetterResize',
scale=img_scale,
allow_scale_up=True,
pad_val=dict(img=114.0)),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
max_aspect_ratio=_base_.max_aspect_ratio,
border_val=(114, 114, 114),
min_area_ratio=_base_.min_area_ratio,
use_mask_refine=_base_.use_mask2refine), *last_transform
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_.custom_hooks[1].switch_pipeline = train_pipeline_stage2