Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug] KeyError: 'Adafactor is already registered in optimizer at torch.optim' #1609

Open
2 tasks done
yeshsurya opened this issue Nov 26, 2024 · 1 comment
Open
2 tasks done
Labels
bug Something isn't working

Comments

@yeshsurya
Copy link

Prerequisite

Environment

OrderedDict([('sys.platform', 'linux'), ('Python', '3.10.15 | packaged by conda-forge | (main, Oct 16 2024, 01:24:24) [GCC 13.3.0]'), ('CUDA available', True), ('MUSA available', False), ('numpy_random_seed', np.uint32(2147483648)), ('GPU 0,1,2,3,4,5,6,7', 'NVIDIA A100-SXM4-80GB'), ('CUDA_HOME', '/usr/local/cuda'), ('NVCC', 'Cuda compilation tools, release 11.8, V11.8.89'), ('GCC', 'gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0'), ('PyTorch', '2.5.0'), ('PyTorch compiling details', 'PyTorch built with:\n - GCC 9.3\n - C++ Version: 201703\n - Intel(R) oneAPI Math Kernel Library Version 2022.1-Product Build 20220311 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.8\n - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_37,code=compute_37\n - CuDNN 90.1\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, \n'), ('TorchVision', '0.20.0'), ('OpenCV', '4.10.0'), ('MMEngine', '0.10.5')])

Reproduces the problem - code sample

from mmdet.apis import init_detector

Reproduces the problem - command or script

python -c "from mmdet.apis import init_detector"

Reproduces the problem - error message

root@2c29850f6eb1:/# python -c "from mmdet.apis import init_detector"
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmdet/apis/__init__.py", line 2, in <module>
    from .det_inferencer import DetInferencer
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmdet/apis/det_inferencer.py", line 15, in <module>
    from mmengine.infer.infer import BaseInferencer, ModelType
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/infer/__init__.py", line 2, in <module>
    from .infer import BaseInferencer
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/infer/infer.py", line 25, in <module>
    from mmengine.runner.checkpoint import (_load_checkpoint,
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/runner/__init__.py", line 2, in <module>
    from ._flexible_runner import FlexibleRunner
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/runner/_flexible_runner.py", line 14, in <module>
    from mmengine._strategy import BaseStrategy
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/_strategy/__init__.py", line 4, in <module>
    from .base import BaseStrategy
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/_strategy/base.py", line 19, in <module>
    from mmengine.model.wrappers import is_model_wrapper
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/model/__init__.py", line 6, in <module>
    from .base_model import BaseDataPreprocessor, BaseModel, ImgDataPreprocessor
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/model/base_model/__init__.py", line 2, in <module>
    from .base_model import BaseModel
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/model/base_model/base_model.py", line 9, in <module>
    from mmengine.optim import OptimWrapper
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/optim/__init__.py", line 2, in <module>
    from .optimizer import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS,
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/optim/optimizer/__init__.py", line 5, in <module>
    from .builder import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS,
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/optim/optimizer/builder.py", line 174, in <module>
    TRANSFORMERS_OPTIMIZERS = register_transformers_optimizers()
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/optim/optimizer/builder.py", line 169, in register_transformers_optimizers
    OPTIMIZERS.register_module(name='Adafactor', module=Adafactor)
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/registry/registry.py", line 661, in register_module
    self._register_module(module=module, module_name=name, force=force)
  File "/azureml-envs/model-evaluation/lib/python3.10/site-packages/mmengine/registry/registry.py", line 611, in _register_module
    raise KeyError(f'{name} is already registered in {self.name} '
KeyError: 'Adafactor is already registered in optimizer at torch.optim'

Additional information

There was same bug reported but closed by specifying downgrade of Pytorch. This would lead to not using the latest PyTorch. We need to fix this in mmengine. Downgrade probably works because PyTorch introduced the optimizer in forward versions.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

2 participants