-
Notifications
You must be signed in to change notification settings - Fork 12
/
storage.go
1758 lines (1444 loc) · 43.3 KB
/
storage.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Atree - Scalable Arrays and Ordered Maps
*
* Copyright Flow Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package atree
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"sort"
"strings"
"sync"
"unsafe"
"github.com/fxamacker/cbor/v2"
)
const LedgerBaseStorageSlabPrefix = "$"
// ValueID identifies an Array or OrderedMap. ValueID is consistent
// independent of inlining status, while ValueID and SlabID are used
// differently despite having the same size and content under the hood.
// By contrast, SlabID is affected by inlining because it identifies
// a slab in storage. Given this, ValueID should be used for
// resource tracking, etc.
type ValueID [unsafe.Sizeof(Address{}) + unsafe.Sizeof(SlabIndex{})]byte
var emptyValueID = ValueID{}
func slabIDToValueID(sid SlabID) ValueID {
var id ValueID
n := copy(id[:], sid.address[:])
copy(id[n:], sid.index[:])
return id
}
func (vid ValueID) equal(sid SlabID) bool {
return bytes.Equal(vid[:len(sid.address)], sid.address[:]) &&
bytes.Equal(vid[len(sid.address):], sid.index[:])
}
func (vid ValueID) String() string {
return fmt.Sprintf(
"0x%x.%d",
binary.BigEndian.Uint64(vid[:8]),
binary.BigEndian.Uint64(vid[8:]),
)
}
// WARNING: Any changes to SlabID or its components (Address and SlabIndex)
// require updates to ValueID definition and functions.
type (
Address [8]byte
SlabIndex [8]byte
// SlabID identifies slab in storage.
// SlabID should only be used to retrieve,
// store, and remove slab in storage.
SlabID struct {
address Address
index SlabIndex
}
)
var (
AddressUndefined = Address{}
SlabIndexUndefined = SlabIndex{}
SlabIDUndefined = SlabID{}
)
// Next returns new SlabIndex with index+1 value.
// The caller is responsible for preventing overflow
// by checking if the index value is valid before
// calling this function.
func (index SlabIndex) Next() SlabIndex {
i := binary.BigEndian.Uint64(index[:])
var next SlabIndex
binary.BigEndian.PutUint64(next[:], i+1)
return next
}
func NewSlabID(address Address, index SlabIndex) SlabID {
return SlabID{address, index}
}
func NewSlabIDFromRawBytes(b []byte) (SlabID, error) {
if len(b) < slabIDSize {
return SlabID{}, NewSlabIDErrorf("incorrect slab ID buffer length %d", len(b))
}
var address Address
copy(address[:], b)
var index SlabIndex
copy(index[:], b[8:])
return SlabID{address, index}, nil
}
func (id SlabID) ToRawBytes(b []byte) (int, error) {
if len(b) < slabIDSize {
return 0, NewSlabIDErrorf("incorrect slab ID buffer length %d", len(b))
}
copy(b, id.address[:])
copy(b[8:], id.index[:])
return slabIDSize, nil
}
func (id SlabID) String() string {
return fmt.Sprintf(
"0x%x.%d",
binary.BigEndian.Uint64(id.address[:]),
binary.BigEndian.Uint64(id.index[:]),
)
}
func (id SlabID) AddressAsUint64() uint64 {
return binary.BigEndian.Uint64(id.address[:])
}
// Address returns the address of SlabID.
func (id SlabID) Address() Address {
return id.address
}
func (id SlabID) IndexAsUint64() uint64 {
return binary.BigEndian.Uint64(id.index[:])
}
func (id SlabID) HasTempAddress() bool {
return id.address == AddressUndefined
}
func (id SlabID) Index() SlabIndex {
return id.index
}
func (id SlabID) Valid() error {
if id == SlabIDUndefined {
return NewSlabIDError("undefined slab ID")
}
if id.index == SlabIndexUndefined {
return NewSlabIDError("undefined slab index")
}
return nil
}
func (id SlabID) Compare(other SlabID) int {
result := bytes.Compare(id.address[:], other.address[:])
if result == 0 {
return bytes.Compare(id.index[:], other.index[:])
}
return result
}
type BaseStorageUsageReporter interface {
BytesRetrieved() int
BytesStored() int
SegmentsReturned() int
SegmentsUpdated() int
SegmentsTouched() int
ResetReporter()
}
type BaseStorage interface {
Store(SlabID, []byte) error
Retrieve(SlabID) ([]byte, bool, error)
Remove(SlabID) error
GenerateSlabID(Address) (SlabID, error)
SegmentCounts() int // number of segments stored in the storage
Size() int // total byte size stored
BaseStorageUsageReporter
}
type Ledger interface {
// GetValue gets a value for the given key in the storage, owned by the given account.
GetValue(owner, key []byte) (value []byte, err error)
// SetValue sets a value for the given key in the storage, owned by the given account.
SetValue(owner, key, value []byte) (err error)
// ValueExists returns true if the given key exists in the storage, owned by the given account.
ValueExists(owner, key []byte) (exists bool, err error)
// AllocateSlabIndex allocates a new slab index under the given account.
AllocateSlabIndex(owner []byte) (SlabIndex, error)
}
type LedgerBaseStorage struct {
ledger Ledger
bytesRetrieved int
bytesStored int
}
var _ BaseStorage = &LedgerBaseStorage{}
func NewLedgerBaseStorage(ledger Ledger) *LedgerBaseStorage {
return &LedgerBaseStorage{
ledger: ledger,
bytesRetrieved: 0,
bytesStored: 0,
}
}
func (s *LedgerBaseStorage) Retrieve(id SlabID) ([]byte, bool, error) {
v, err := s.ledger.GetValue(id.address[:], SlabIndexToLedgerKey(id.index))
s.bytesRetrieved += len(v)
if err != nil {
// Wrap err as external error (if needed) because err is returned by Ledger interface.
return nil, false, wrapErrorfAsExternalErrorIfNeeded(err, fmt.Sprintf("failed to retrieve slab %s", id))
}
return v, len(v) > 0, nil
}
func (s *LedgerBaseStorage) Store(id SlabID, data []byte) error {
s.bytesStored += len(data)
err := s.ledger.SetValue(id.address[:], SlabIndexToLedgerKey(id.index), data)
if err != nil {
// Wrap err as external error (if needed) because err is returned by Ledger interface.
return wrapErrorfAsExternalErrorIfNeeded(err, fmt.Sprintf("failed to store slab %s", id))
}
return nil
}
func (s *LedgerBaseStorage) Remove(id SlabID) error {
err := s.ledger.SetValue(id.address[:], SlabIndexToLedgerKey(id.index), nil)
if err != nil {
// Wrap err as external error (if needed) because err is returned by Ledger interface.
return wrapErrorfAsExternalErrorIfNeeded(err, fmt.Sprintf("failed to remove slab %s", id))
}
return nil
}
func (s *LedgerBaseStorage) GenerateSlabID(address Address) (SlabID, error) {
idx, err := s.ledger.AllocateSlabIndex(address[:])
if err != nil {
// Wrap err as external error (if needed) because err is returned by Ledger interface.
return SlabID{},
wrapErrorfAsExternalErrorIfNeeded(
err,
fmt.Sprintf("failed to generate slab ID with address 0x%x", address),
)
}
return NewSlabID(address, idx), nil
}
func SlabIndexToLedgerKey(ind SlabIndex) []byte {
return []byte(LedgerBaseStorageSlabPrefix + string(ind[:]))
}
func LedgerKeyIsSlabKey(key string) bool {
return strings.HasPrefix(key, LedgerBaseStorageSlabPrefix)
}
func (s *LedgerBaseStorage) BytesRetrieved() int {
return s.bytesRetrieved
}
func (s *LedgerBaseStorage) BytesStored() int {
return s.bytesStored
}
func (s *LedgerBaseStorage) SegmentCounts() int {
// TODO
return 0
}
func (s *LedgerBaseStorage) Size() int {
// TODO
return 0
}
func (s *LedgerBaseStorage) SegmentsReturned() int {
// TODO
return 0
}
func (s *LedgerBaseStorage) SegmentsUpdated() int {
// TODO
return 0
}
func (s *LedgerBaseStorage) SegmentsTouched() int {
// TODO
return 0
}
func (s *LedgerBaseStorage) ResetReporter() {
s.bytesStored = 0
s.bytesRetrieved = 0
}
type SlabIterator func() (SlabID, Slab)
type SlabStorage interface {
Store(SlabID, Slab) error
Retrieve(SlabID) (Slab, bool, error)
RetrieveIfLoaded(SlabID) Slab
Remove(SlabID) error
GenerateSlabID(address Address) (SlabID, error)
Count() int
SlabIterator() (SlabIterator, error)
}
type BasicSlabStorage struct {
Slabs map[SlabID]Slab
slabIndex map[Address]SlabIndex
DecodeStorable StorableDecoder
DecodeTypeInfo TypeInfoDecoder
cborEncMode cbor.EncMode
cborDecMode cbor.DecMode
}
var _ SlabStorage = &BasicSlabStorage{}
func NewBasicSlabStorage(
cborEncMode cbor.EncMode,
cborDecMode cbor.DecMode,
decodeStorable StorableDecoder,
decodeTypeInfo TypeInfoDecoder,
) *BasicSlabStorage {
return &BasicSlabStorage{
Slabs: make(map[SlabID]Slab),
slabIndex: make(map[Address]SlabIndex),
cborEncMode: cborEncMode,
cborDecMode: cborDecMode,
DecodeStorable: decodeStorable,
DecodeTypeInfo: decodeTypeInfo,
}
}
func (s *BasicSlabStorage) GenerateSlabID(address Address) (SlabID, error) {
index := s.slabIndex[address]
nextIndex := index.Next()
s.slabIndex[address] = nextIndex
return NewSlabID(address, nextIndex), nil
}
func (s *BasicSlabStorage) RetrieveIfLoaded(id SlabID) Slab {
return s.Slabs[id]
}
func (s *BasicSlabStorage) Retrieve(id SlabID) (Slab, bool, error) {
slab, ok := s.Slabs[id]
return slab, ok, nil
}
func (s *BasicSlabStorage) Store(id SlabID, slab Slab) error {
s.Slabs[id] = slab
return nil
}
func (s *BasicSlabStorage) Remove(id SlabID) error {
delete(s.Slabs, id)
return nil
}
func (s *BasicSlabStorage) Count() int {
return len(s.Slabs)
}
func (s *BasicSlabStorage) SlabIDs() []SlabID {
result := make([]SlabID, 0, len(s.Slabs))
for slabID := range s.Slabs {
result = append(result, slabID)
}
return result
}
// Encode returns serialized slabs in storage.
// This is currently used for testing.
func (s *BasicSlabStorage) Encode() (map[SlabID][]byte, error) {
m := make(map[SlabID][]byte)
for id, slab := range s.Slabs {
b, err := EncodeSlab(slab, s.cborEncMode)
if err != nil {
// err is already categorized by Encode().
return nil, err
}
m[id] = b
}
return m, nil
}
func (s *BasicSlabStorage) SlabIterator() (SlabIterator, error) {
type slabEntry struct {
SlabID
Slab
}
var slabs []slabEntry
if len(s.Slabs) > 0 {
slabs = make([]slabEntry, 0, len(s.Slabs))
}
for id, slab := range s.Slabs {
slabs = append(slabs, slabEntry{
SlabID: id,
Slab: slab,
})
}
var i int
return func() (SlabID, Slab) {
if i >= len(slabs) {
return SlabIDUndefined, nil
}
slabEntry := slabs[i]
i++
return slabEntry.SlabID, slabEntry.Slab
}, nil
}
// CheckStorageHealth checks for the health of slab storage.
// It traverses the slabs and checks these factors:
// - All non-root slabs only has a single parent reference (no double referencing)
// - Every child of a parent shares the same ownership (childSlabID.Address == parentSlabID.Address)
// - The number of root slabs are equal to the expected number (skipped if expectedNumberOfRootSlabs is -1)
// This should be used for testing purposes only, as it might be slow to process
func CheckStorageHealth(storage SlabStorage, expectedNumberOfRootSlabs int) (map[SlabID]struct{}, error) {
parentOf := make(map[SlabID]SlabID)
leaves := make([]SlabID, 0)
slabIterator, err := storage.SlabIterator()
if err != nil {
// Wrap err as external error (if needed) because err is returned by SlabStorage interface.
return nil, wrapErrorfAsExternalErrorIfNeeded(err, "failed to create slab iterator")
}
slabs := map[SlabID]Slab{}
for {
id, slab := slabIterator()
if id == SlabIDUndefined {
break
}
if _, ok := slabs[id]; ok {
return nil, NewFatalError(fmt.Errorf("duplicate slab %s", id))
}
slabs[id] = slab
atLeastOneExternalSlab := false
childStorables := slab.ChildStorables()
for len(childStorables) > 0 {
var next []Storable
for _, s := range childStorables {
if sids, ok := s.(SlabIDStorable); ok {
sid := SlabID(sids)
if _, found := parentOf[sid]; found {
return nil, NewFatalError(fmt.Errorf("two parents are captured for the slab %s", sid))
}
parentOf[sid] = id
atLeastOneExternalSlab = true
}
// This handles inlined slab because inlined slab is a child storable (s) and
// we traverse s.ChildStorables() for its inlined elements.
next = append(next, s.ChildStorables()...)
}
childStorables = next
}
if !atLeastOneExternalSlab {
leaves = append(leaves, id)
}
}
rootsMap := make(map[SlabID]struct{})
visited := make(map[SlabID]struct{})
var id SlabID
for _, leaf := range leaves {
id = leaf
if _, ok := visited[id]; ok {
return nil, NewFatalError(fmt.Errorf("at least two references found to the leaf slab %s", id))
}
visited[id] = struct{}{}
for {
parentID, found := parentOf[id]
if !found {
// we reach the root
rootsMap[id] = struct{}{}
break
}
visited[parentID] = struct{}{}
childSlab, ok, err := storage.Retrieve(id)
if !ok {
return nil, NewSlabNotFoundErrorf(id, "failed to get child slab")
}
if err != nil {
// Wrap err as external error (if needed) because err is returned by SlabStorage interface.
return nil, wrapErrorfAsExternalErrorIfNeeded(err, fmt.Sprintf("failed to retrieve child slab %s", id))
}
parentSlab, ok, err := storage.Retrieve(parentID)
if !ok {
return nil, NewSlabNotFoundErrorf(id, "failed to get parent slab")
}
if err != nil {
// Wrap err as external error (if needed) because err is returned by SlabStorage interface.
return nil, wrapErrorfAsExternalErrorIfNeeded(err, fmt.Sprintf("failed to retrieve parent slab %s", parentID))
}
childOwner := childSlab.SlabID().address
parentOwner := parentSlab.SlabID().address
if childOwner != parentOwner {
return nil, NewFatalError(
fmt.Errorf(
"parent and child are not owned by the same account: child.owner %s, parent.owner %s",
childOwner,
parentOwner,
))
}
id = parentID
}
}
if len(visited) != len(slabs) {
var unreachableID SlabID
var unreachableSlab Slab
for id, slab := range slabs {
if _, ok := visited[id]; !ok {
unreachableID = id
unreachableSlab = slab
break
}
}
return nil, NewFatalError(
fmt.Errorf(
"slab was not reachable from leaves: %s: %s",
unreachableID,
unreachableSlab,
))
}
if (expectedNumberOfRootSlabs >= 0) && (len(rootsMap) != expectedNumberOfRootSlabs) {
return nil, NewFatalError(
fmt.Errorf(
"number of root slabs doesn't match: expected %d, got %d",
expectedNumberOfRootSlabs,
len(rootsMap),
))
}
return rootsMap, nil
}
type PersistentSlabStorage struct {
baseStorage BaseStorage
cache map[SlabID]Slab
deltas map[SlabID]Slab
tempSlabIndex uint64
DecodeStorable StorableDecoder
DecodeTypeInfo TypeInfoDecoder
cborEncMode cbor.EncMode
cborDecMode cbor.DecMode
}
var _ SlabStorage = &PersistentSlabStorage{}
// HasUnsavedChanges returns true if there are any modified and unsaved slabs in storage with given address.
func (s *PersistentSlabStorage) HasUnsavedChanges(address Address) bool {
for k := range s.deltas {
if k.address == address {
return true
}
}
return false
}
func (s *PersistentSlabStorage) SlabIterator() (SlabIterator, error) {
var slabs []struct {
SlabID
Slab
}
// Get slabs connected to slab from base storage and append those slabs to slabs slice.
appendChildStorables := func(slab Slab) error {
childStorables := slab.ChildStorables()
for len(childStorables) > 0 {
var nextChildStorables []Storable
for _, childStorable := range childStorables {
slabIDStorable, ok := childStorable.(SlabIDStorable)
if !ok {
// Append child storables of this childStorable to handle inlined slab containing SlabIDStorable.
nextChildStorables = append(
nextChildStorables,
childStorable.ChildStorables()...,
)
continue
}
id := SlabID(slabIDStorable)
if _, ok := s.deltas[id]; ok {
continue
}
if _, ok := s.cache[id]; ok {
continue
}
var err error
slab, ok, err = s.RetrieveIgnoringDeltas(id)
if !ok {
return NewSlabNotFoundErrorf(id, "slab not found during slab iteration")
}
if err != nil {
return wrapErrorfAsExternalErrorIfNeeded(err, fmt.Sprintf("failed to retrieve slab %s", id))
}
slabs = append(slabs, struct {
SlabID
Slab
}{
SlabID: id,
Slab: slab,
})
nextChildStorables = append(
nextChildStorables,
slab.ChildStorables()...,
)
}
childStorables = nextChildStorables
}
return nil
}
// Append slab and slabs connected to it to slabs slice.
appendSlab := func(id SlabID, slab Slab) error {
slabs = append(slabs, struct {
SlabID
Slab
}{
SlabID: id,
Slab: slab,
})
return appendChildStorables(slab)
}
for id, slab := range s.deltas {
if slab == nil {
continue
}
err := appendSlab(id, slab)
if err != nil {
return nil, err
}
}
// Create a temporary copy of all the cached IDs,
// as s.cache will get mutated inside the for-loop
cached := make([]SlabID, 0, len(s.cache))
for id := range s.cache {
cached = append(cached, id)
}
for _, id := range cached {
slab := s.cache[id]
if slab == nil {
continue
}
if _, ok := s.deltas[id]; ok {
continue
}
err := appendSlab(id, slab)
if err != nil {
return nil, err
}
}
var i int
return func() (SlabID, Slab) {
if i >= len(slabs) {
return SlabIDUndefined, nil
}
slabEntry := slabs[i]
i++
return slabEntry.SlabID, slabEntry.Slab
}, nil
}
type StorageOption func(st *PersistentSlabStorage) *PersistentSlabStorage
func NewPersistentSlabStorage(
base BaseStorage,
cborEncMode cbor.EncMode,
cborDecMode cbor.DecMode,
decodeStorable StorableDecoder,
decodeTypeInfo TypeInfoDecoder,
opts ...StorageOption,
) *PersistentSlabStorage {
storage := &PersistentSlabStorage{
baseStorage: base,
cache: make(map[SlabID]Slab),
deltas: make(map[SlabID]Slab),
cborEncMode: cborEncMode,
cborDecMode: cborDecMode,
DecodeStorable: decodeStorable,
DecodeTypeInfo: decodeTypeInfo,
}
for _, applyOption := range opts {
storage = applyOption(storage)
}
return storage
}
func (s *PersistentSlabStorage) GenerateSlabID(address Address) (SlabID, error) {
if address == AddressUndefined {
var idx SlabIndex
s.tempSlabIndex++
binary.BigEndian.PutUint64(idx[:], s.tempSlabIndex)
return NewSlabID(address, idx), nil
}
id, err := s.baseStorage.GenerateSlabID(address)
if err != nil {
// Wrap err as external error (if needed) because err is returned by BaseStorage interface.
return SlabID{}, wrapErrorfAsExternalErrorIfNeeded(err, fmt.Sprintf("failed to generate slab ID for address 0x%x", address))
}
return id, nil
}
func (s *PersistentSlabStorage) sortedOwnedDeltaKeys() []SlabID {
keysWithOwners := make([]SlabID, 0, len(s.deltas))
for k := range s.deltas {
// ignore the ones that are not owned by accounts
if k.address != AddressUndefined {
keysWithOwners = append(keysWithOwners, k)
}
}
sort.Slice(keysWithOwners, func(i, j int) bool {
a := keysWithOwners[i]
b := keysWithOwners[j]
if a.address == b.address {
return a.IndexAsUint64() < b.IndexAsUint64()
}
return a.AddressAsUint64() < b.AddressAsUint64()
})
return keysWithOwners
}
func (s *PersistentSlabStorage) Commit() error {
// this part ensures the keys are sorted so commit operation is deterministic
keysWithOwners := s.sortedOwnedDeltaKeys()
return s.commit(keysWithOwners)
}
func (s *PersistentSlabStorage) commit(keys []SlabID) error {
var err error
for _, id := range keys {
slab := s.deltas[id]
// deleted slabs
if slab == nil {
err = s.baseStorage.Remove(id)
if err != nil {
// Wrap err as external error (if needed) because err is returned by BaseStorage interface.
return wrapErrorfAsExternalErrorIfNeeded(err, fmt.Sprintf("failed to remove slab %s", id))
}
// Deleted slabs are removed from deltas and added to read cache so that:
// 1. next read is from in-memory read cache
// 2. deleted slabs are not re-committed in next commit
s.cache[id] = nil
delete(s.deltas, id)
continue
}
// serialize
data, err := EncodeSlab(slab, s.cborEncMode)
if err != nil {
// err is categorized already by Encode()
return err
}
// store
err = s.baseStorage.Store(id, data)
if err != nil {
// Wrap err as external error (if needed) because err is returned by BaseStorage interface.
return wrapErrorfAsExternalErrorIfNeeded(err, fmt.Sprintf("failed to store slab %s", id))
}
// add to read cache
s.cache[id] = slab
// It's safe to remove slab from deltas because
// iteration is on non-temp slabs and temp slabs
// are still in deltas.
delete(s.deltas, id)
}
// Do NOT reset deltas because slabs with empty address are not saved.
return nil
}
func (s *PersistentSlabStorage) FastCommit(numWorkers int) error {
// this part ensures the keys are sorted so commit operation is deterministic
keysWithOwners := s.sortedOwnedDeltaKeys()
if len(keysWithOwners) == 0 {
return nil
}
// limit the number of workers to the number of keys
if numWorkers > len(keysWithOwners) {
numWorkers = len(keysWithOwners)
}
// construct job queue
jobs := make(chan SlabID, len(keysWithOwners))
for _, id := range keysWithOwners {
jobs <- id
}
close(jobs)
type encodedSlabs struct {
slabID SlabID
data []byte
err error
}
// construct result queue
results := make(chan *encodedSlabs, len(keysWithOwners))
// define encoders (workers) and launch them
// encoders encodes slabs in parallel
encoder := func(wg *sync.WaitGroup, done <-chan struct{}, jobs <-chan SlabID, results chan<- *encodedSlabs) {
defer wg.Done()
for id := range jobs {
// Check if goroutine is signaled to stop before proceeding.
select {
case <-done:
return
default:
}
slab := s.deltas[id]
if slab == nil {
results <- &encodedSlabs{
slabID: id,
data: nil,
err: nil,
}
continue
}
// serialize
data, err := EncodeSlab(slab, s.cborEncMode)
results <- &encodedSlabs{
slabID: id,
data: data,
err: err,
}
}
}
done := make(chan struct{})
var wg sync.WaitGroup
wg.Add(numWorkers)
for i := 0; i < numWorkers; i++ {
go encoder(&wg, done, jobs, results)
}
defer func() {
// This ensures that all goroutines are stopped before output channel is closed.
// Wait for all goroutines to finish
wg.Wait()
// Close output channel
close(results)
}()
// process the results while encoders are working
// we need to capture them inside a map
// again so we can apply them in order of keys
encSlabByID := make(map[SlabID][]byte, len(keysWithOwners))
for i := 0; i < len(keysWithOwners); i++ {
result := <-results
// if any error return
if result.err != nil {
// Closing done channel signals goroutines to stop.
close(done)
// result.err is already categorized by Encode().
return result.err
}
encSlabByID[result.slabID] = result.data
}
// at this stage all results has been processed
// and ready to be passed to base storage layer
for _, id := range keysWithOwners {
data := encSlabByID[id]
var err error
// deleted slabs
if data == nil {
err = s.baseStorage.Remove(id)
if err != nil {
// Wrap err as external error (if needed) because err is returned by BaseStorage interface.
return wrapErrorfAsExternalErrorIfNeeded(err, fmt.Sprintf("failed to remove slab %s", id))
}
// Deleted slabs are removed from deltas and added to read cache so that:
// 1. next read is from in-memory read cache
// 2. deleted slabs are not re-committed in next commit
s.cache[id] = nil
delete(s.deltas, id)
continue
}
// store
err = s.baseStorage.Store(id, data)
if err != nil {
// Wrap err as external error (if needed) because err is returned by BaseStorage interface.
return wrapErrorfAsExternalErrorIfNeeded(err, fmt.Sprintf("failed to store slab %s", id))
}
s.cache[id] = s.deltas[id]
// It's safe to remove slab from deltas because
// iteration is on non-temp slabs and temp slabs
// are still in deltas.
delete(s.deltas, id)
}
// Do NOT reset deltas because slabs with empty address are not saved.
return nil
}
// NondeterministicFastCommit commits changed slabs in nondeterministic order.
// Encoded slab data is deterministic (e.g. array and map iteration is deterministic).
// IMPORTANT: This function is used by migration programs when commit order of slabs
// is not required to be deterministic (while preserving deterministic array and map iteration).
func (s *PersistentSlabStorage) NondeterministicFastCommit(numWorkers int) error {
// No changes
if len(s.deltas) == 0 {
return nil
}
type slabToBeEncoded struct {
slabID SlabID