-
Notifications
You must be signed in to change notification settings - Fork 4
/
srdyna.py
440 lines (384 loc) · 15.9 KB
/
srdyna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import patches
import matplotlib.animation as manimation
import random
class SimpleGridWorld():
LEFT = 0
RIGHT = 1
UP = 2
DOWN = 3
ACTION_LABELS = ["L", "R", "U", "D"]
def __init__(self, w=5, h=5, max_reward_locs=1, world='worlds/latent_learning.txt'):
self.max_reward_locs = max_reward_locs
self.load_world(world)
self.map = self.get_map()
self.reward_locs = {} # loc -> {reward, index}
self.terminal_state = self.n_states() - 1 # Last index
self.actions = [self.LEFT, self.RIGHT, self.UP, self.DOWN]
def load_world(self, fn):
self.wall_coords = []
with open(fn, 'r') as f:
y = 0
for line in list(f.readlines())[::-1]:
self.w = len(line) - 1
for x, cell in enumerate(line):
if cell == '1':
self.wall_coords.append((x, y))
y += 1
self.h = y
print("Loaded %dx%d world with %d states" % (self.w, self.h, self.n_states()))
def add_reward(self, loc, amount=10):
new_idx = len(self.reward_locs)
s = self.count_cells() + new_idx
self.reward_locs[loc] = {'reward': amount, 'index': new_idx, 's': s}
def wall_at(self, loc):
return self.map[loc[1], loc[0]] == 1
def get_map(self):
m = self.get_space()
if self.wall_coords:
for mc in self.wall_coords:
m[mc[1], mc[0]] = 1
return m
def state_at_loc(self, loc, ignore_reward=False):
if not ignore_reward and self.reward_loc(loc):
ro = self.reward_locs.get(loc)
s = ro.get('s')
else:
x, y = loc
s = self.w * y + x
return s
def loc_at_state(self, s):
x = int(s % self.w)
y = int(s / self.w)
return (x, y)
def reward_state(self, s):
# TODO: Efficiency
cells = self.count_cells()
is_reward_state = s in range(cells, cells+self.max_reward_locs)
reward = 0
if is_reward_state:
for loc, ro in self.reward_locs.items():
if ro.get('s') == s:
reward = ro.get('reward')
return is_reward_state, reward
def reward_loc(self, loc):
return loc in self.reward_locs.keys()
def n_states(self):
return self.count_cells() + self.max_reward_locs + 1
def count_cells(self):
return self.w * self.h
def available_actions(self, s):
if s >= self.count_cells():
available = [0]
else:
available = self.actions
return available
def random_action(self, s):
aa = self.available_actions(s)
return random.choice(aa)
def successor(self, s, a):
delta = {
self.LEFT: (-1, 0),
self.RIGHT: (1, 0),
self.UP: (0, 1),
self.DOWN: (0, -1),
}[a]
done = False
reward = 0
loc = self.loc_at_state(s)
is_reward, reward = self.reward_state(s)
if is_reward:
next_s = self.terminal_state
done = True
else:
next_loc = (loc[0] + delta[0], loc[1] + delta[1])
if not self.valid_loc(next_loc):
next_s = s # Revert
else:
next_s = self.state_at_loc(next_loc)
return (next_s, reward, done)
def valid_loc(self, loc):
x, y = loc
if x < 0 or x >= self.w or y < 0 or y >= self.h:
return False
if self.wall_at(loc):
return False
return True
def valid_state(self, s):
return self.valid_loc(self.loc_at_state(s))
def get_space(self):
m = np.zeros((self.h, self.w))
return m
def dim(self):
return self.get_space().size
def render(self, a, ax=None, last_agent_state=True, last_k_steps=0):
if ax is None:
fig, ax = plt.subplots()
m = self.get_map()
ax.imshow(m, origin='bottom')
if a.last_state is not None:
last_loc = self.loc_at_state(a.last_state)
render_loc = last_loc if last_agent_state else self.loc_at_state(a.state)
agent = patches.Circle(render_loc, radius=0.5, fill=True, color='white')
ax.add_patch(agent)
for loc in self.reward_locs.keys():
reward = patches.Circle(loc, radius=0.5, fill=True, color='green')
ax.add_patch(reward)
if last_k_steps:
for t, s, action, s_n, _ in a.replay_buffer[-last_k_steps:]:
age = a.t - t
loc = self.loc_at_state(s)
a_step = patches.Circle(loc, radius=0.2, fill=True, color='white', alpha=1. - (age/last_k_steps))
ax.add_patch(a_step)
# print(t, s, loc, action, s_n)
ax.set_title('Map')
ax.set_axis_off()
class SRDyna():
def __init__(self, id, env, loc=(0, 0), **params):
self.id = id
self.t = 0
self.ep_t = 0
self.start_loc = loc
self.env = env
self.n_actions = len(env.actions)
self.action = None
self.last_state = None
self.last_action = None
self.last_reward = None
n_state_actions = self.env.count_cells() * self.n_actions \
+ env.max_reward_locs + 1 # 1 for terminal
# Params
self.alpha_sr = 0.3
self.alpha_w = params.get('alpha_w', 0.3)
self.gamma = 0.95
self.eps = 0.1
self.post_step_replays = params.get('post_step_replays', 10)
self.exp_lambda = params.get('exp_lambda', 1./5)
# Model
self.H = params.get('H', np.eye(n_state_actions, n_state_actions)) # H(s, a) -> Expected discounted state-action occupancy
self.H[-1, -1] = 0 # Terminal state zero'd
self.W = np.zeros(n_state_actions) # Value function weights (w(sa) -> E_a[R(s, a)])
# Memory
self.replay_buffer = np.array([], dtype=(int, 5)) # Append to end
# self.Particle = recordclass('Particle', 'loc last_loc energy') # loc as Node ID
self.state = self.initial_state()
def initial_state(self):
return self.env.state_at_loc(self.start_loc) # (x, y)
def terminate_episode(self, reset_state=None):
if reset_state is None:
reset_state = self.initial_state()
self.state = reset_state
self.last_state = None
self.last_action = None
self.last_reward = None
self.action = self.eps_greedy_policy(self.state)
self.ep_t = 0
def n_states(self):
return self.env.count_cells()
def n_viz_sas(self):
return self.env.count_cells() * self.n_actions
def state_action_index(self, s, a):
"""
Index into S x A size array for H
"""
cells = self.env.count_cells()
if s < cells:
return s * self.n_actions + a
else:
return cells * self.n_actions + (s - cells)
def v_pi(self):
"""
From paper: 'For SR-Dyna, which worked with action values rather than state values,
the state value function was computed as the max action value available
in that state.'
"""
vs = np.matmul(self.H, self.W.reshape(-1, 1)) # 40x x 1
vs = self.corrected_value_map(vs)
vs = vs[:self.n_viz_sas()].reshape(-1, 4)
values = vs.max(axis=1)
return values
def q_pi(self, s, a):
sa_index = self.state_action_index(s, a)
return (self.H[sa_index] * self.W).sum()
def random_experience_sas(self, k=1):
"""
Choose an experience sample uniformly at random (from unique
experience list), and return it's s, a
"""
unique_sas = np.unique(self.replay_buffer[:, 1:3], axis=0)
idxs = np.random.choice(len(unique_sas), size=k, replace=True)
exps = unique_sas[idxs]
return exps
def tiebreak_argmax(self, vals):
return np.random.choice(np.flatnonzero(vals == vals.max()))
def eps_greedy_policy(self, s, verbose=False):
if self.env.reward_state(s)[0] or s == self.env.terminal_state:
return 0
greedy = np.random.rand() > self.eps
if greedy:
sa_index = self.state_action_index(s, 0)
qpi_all_actions = (self.H[sa_index:sa_index+4] * self.W).sum(axis=1)
action = self.tiebreak_argmax(qpi_all_actions)
if verbose:
print("Q vals: %s, Action: %d" % (qpi_all_actions, action))
else:
action = self.env.random_action(s)
return action
def weighted_experience_samples(self, k=10):
"""
Draw k samples from all unique (s, a)s, for each select a single
transition from filtered buffer via exponential distribution (recency
weighted).
"""
experiences = self.replay_buffer
random_sas = self.random_experience_sas(k=k)
sample_ids = np.random.exponential(scale=1/self.exp_lambda, size=len(random_sas)).astype(int)
experience_samples = []
for sampled_id, from_sa in zip(sample_ids, random_sas):
s, a = from_sa
# Filter to only experiences from s, a
exp_rows = (experiences[:, 1] == s) & (experiences[:, 2] == a)
experiences_from_sa = experiences[exp_rows]
n_exps = len(experiences_from_sa)
# Recency weighting via sampled_id (Exponential over indexes)
sampled_id = n_exps - np.clip(sampled_id, a_min=1, a_max=n_exps)
experience_samples.append(experiences_from_sa[sampled_id])
return np.array(experience_samples)
def learn_offline(self, k=10):
"""
Replay k transition samples (recency weighted) as per Eq 18
"""
if not k:
return
samples = self.weighted_experience_samples(k=k)
# Update state-action SR
for t, s, a, s_prime, a_prime in samples:
sa_prime_index = self.state_action_index(s_prime, 0)
qs = (self.H[sa_prime_index:sa_prime_index+4] * self.W).sum(axis=1)
if (qs == qs.max()).sum() > 1:
# Ties, use a_prime (see https://github.com/evanrussek/Predictive-Representations-PLOS-CB-2017/blob/fb83671377d8ea0959fa421ef13f8f56d9dd65b2/agents/model_SRDYNA.m#L97)
a_star = a_prime
else:
a_star = self.tiebreak_argmax(qs)
sa_star_idx = self.state_action_index(s_prime, a_star)
sa_idx = self.state_action_index(s, a)
one_hot_sa = np.zeros(self.H.shape[0])
one_hot_sa[sa_idx] = 1
self.H[sa_idx] += self.alpha_sr * (one_hot_sa + self.gamma * self.H[sa_star_idx] - self.H[sa_idx])
def learn(self, s, a, r, s_prime, a_prime, verbose=False):
"""
Perform TD and TD-like updates to W and H.
See eq 15 & 17, 8.
"""
# Update H
sa_idx = self.state_action_index(s, a)
sa_prime_idx = self.state_action_index(s_prime, a_prime)
one_hot_sa = np.zeros(self.H.shape[0])
one_hot_sa[sa_idx] = 1
self.H[sa_idx] += self.alpha_sr * (one_hot_sa + self.gamma * self.H[sa_prime_idx] - self.H[sa_idx])
# Update value weights (W) from TD rule (Eq. 15)
delta = r + self.gamma * self.q_pi(s_prime, a_prime) - self.q_pi(s, a)
feature_rep = self.H[sa_idx]
norm_feature_rep = feature_rep / (feature_rep ** 2).sum()
w_update = self.alpha_w * delta * norm_feature_rep
self.W += w_update
def step(self, random_policy=False, verbose=False, learning=True):
"""
Choose action
Get next state from environment based on action
Learn from s, a, r, s'
Update state
"""
if self.action is None:
self.action = self.env.random_action(self.state)
s_prime, r, done = self.env.successor(self.state, self.action)
if random_policy:
a_prime = self.env.random_action(s_prime)
else:
a_prime = self.eps_greedy_policy(s_prime, verbose=verbose)
if learning:
self.learn(self.state, self.action, r, s_prime, a_prime, verbose=verbose)
if verbose:
print("%s -> a:%d -> %s (r=%d)" % (self.state, self.action, s_prime, r))
# Add to buffer
exp = (self.t, self.state, self.action, s_prime, a_prime)
self.replay_buffer = np.append(self.replay_buffer, [exp], axis=0)
if learning:
self.learn_offline(k=self.post_step_replays) # 10 replay steps after each step
self.last_state = self.state
self.last_action = self.action
self.state = s_prime
self.action = a_prime
self.t += 1
self.ep_t += 1
if done:
self.terminate_episode()
return done
def corrected_value_map(self, mat_):
"""
Reconstruct matrix swapping in single-action reward states
for correct rendering.
"""
mat = mat_.copy()
for loc, ro in self.env.reward_locs.items():
s = ro.get('s')
sa = self.state_action_index(self.env.state_at_loc(loc, ignore_reward=True), 0)
sa_goal = self.state_action_index(s, 0)
mat[sa:sa+4] = mat[sa_goal]
return mat
def render_state_values(self, ax, fig=None, vmax=None):
values = self.v_pi()
ax.imshow(values.reshape(self.env.h, self.env.w),
origin='bottom',
cmap='Greys_r', vmin=0, vmax=vmax)
ax.set_title("$V_{\\pi}$")
ax.set_axis_off()
def render_W(self, ax, fig=None, vmax=None):
W = self.corrected_value_map(self.W)
state_weights = W[:self.n_viz_sas()].reshape(-1, 4).max(axis=1)
ax.imshow(state_weights.reshape(self.env.h, self.env.w),
origin='bottom',
cmap='Greys_r', vmin=0, vmax=vmax)
ax.set_title("W (%.2f-%.2f)" % (state_weights.min(), state_weights.max()))
ax.set_axis_off()
def render_sr(self, s, ax, cmap='plasma', alpha=1.0):
H = self.corrected_value_map(self.H)
sa_idx = self.state_action_index(s, 0)
state_sr = H[sa_idx:sa_idx+4].sum(axis=0)[:self.n_viz_sas()].reshape(-1, 4).max(axis=1)
ax.imshow(state_sr.reshape(self.env.h, self.env.w), origin='bottom', alpha=alpha, cmap=cmap)
loc = self.env.loc_at_state(s)
ax.set_title("SR(%d, %d)" % (loc[0], loc[1]))
ax.set_axis_off()
def make_plots(self, sr_state=None):
if sr_state is None:
sr_state = self.state
fig, axs = plt.subplots(1, 4, dpi=144)
self.env.render(self, ax=axs[0], last_k_steps=self.ep_t)
self.render_state_values(ax=axs[1], fig=fig)
self.render_W(ax=axs[2], fig=fig)
self.render_sr(sr_state, ax=axs[3])
plt.show()
def record_trials(self, title="recorded_trials", n_trial_per_loc=1,
start_locs=None, learning=False, max_steps=100):
metadata = dict(title=title, artist='JG')
writer = manimation.FFMpegFileWriter(fps=15, metadata=metadata)
fig, axs = plt.subplots(1, 4, figsize=(7, 3))
fig.tight_layout()
self.eps = 0 # Fully greedy for recording
with writer.saving(fig, "./out/%s.mp4" % title, 144):
for sl in start_locs:
for trial in range(n_trial_per_loc):
self.terminate_episode(reset_state=self.env.state_at_loc(sl))
done = False
steps = 0
while not done and steps < max_steps:
done = self.step(learning=learning)
self.env.render(self, ax=axs[0], last_k_steps=self.ep_t)
self.render_state_values(ax=axs[1], fig=fig)
self.render_W(ax=axs[2], fig=fig)
self.render_sr(self.state, ax=axs[3])
writer.grab_frame()
steps += 1
for ax in axs:
ax.clear()