-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
src: cpu: aarch64: add ACL s8:s8:f32 matmul
- Add acl_lowp_matmul_t which implements matmul for s8:s8:f32 - Bump minimum ACL version to 24.04 Co-authored-by: Milos Puzovic <[email protected]>
- Loading branch information
Showing
3 changed files
with
281 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,276 @@ | ||
/******************************************************************************* | ||
* Copyright 2024 Arm Ltd. and affiliates | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*******************************************************************************/ | ||
|
||
#ifndef ACL_LOWP_MATMUL_HPP | ||
#define ACL_LOWP_MATMUL_HPP | ||
|
||
#include "cpu/cpu_primitive.hpp" | ||
#include "cpu/matmul/cpu_matmul_pd.hpp" | ||
#include "cpu/matmul/matmul_utils.hpp" | ||
|
||
#include "arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h" | ||
#include "cpu/aarch64/acl_utils.hpp" | ||
|
||
namespace dnnl { | ||
namespace impl { | ||
namespace cpu { | ||
namespace aarch64 { | ||
namespace matmul { | ||
|
||
struct acl_lowp_matmul_obj_t { | ||
arm_compute::NEGEMMLowpMatrixMultiplyCore gemm; | ||
arm_compute::Tensor src_tensor; | ||
arm_compute::Tensor wei_tensor; | ||
arm_compute::Tensor bia_tensor; | ||
arm_compute::Tensor dst_tensor; | ||
}; | ||
|
||
struct acl_lowp_matmul_conf_t { | ||
arm_compute::TensorInfo src_tensor_info; | ||
arm_compute::TensorInfo wei_tensor_info; | ||
bool with_bias; | ||
arm_compute::TensorInfo bia_tensor_info; | ||
arm_compute::TensorInfo dst_tensor_info; | ||
}; | ||
|
||
status_t configure_gemm( | ||
acl_lowp_matmul_obj_t &acl_obj, const acl_lowp_matmul_conf_t &almc) { | ||
|
||
acl_obj.src_tensor.allocator()->init(almc.src_tensor_info); | ||
acl_obj.wei_tensor.allocator()->init(almc.wei_tensor_info); | ||
if (almc.with_bias) { | ||
acl_obj.bia_tensor.allocator()->init(almc.bia_tensor_info); | ||
} | ||
acl_obj.dst_tensor.allocator()->init(almc.dst_tensor_info); | ||
|
||
acl_obj.gemm.configure(&acl_obj.src_tensor, &acl_obj.wei_tensor, | ||
almc.with_bias ? &acl_obj.bia_tensor : nullptr, | ||
&acl_obj.dst_tensor); | ||
|
||
return status::success; | ||
} | ||
|
||
struct acl_lowp_matmul_resource_t : public resource_t { | ||
acl_lowp_matmul_resource_t() | ||
: acl_obj_(utils::make_unique<acl_lowp_matmul_obj_t>()) {} | ||
|
||
status_t configure(const acl_lowp_matmul_conf_t &almc) { | ||
|
||
if (!acl_obj_) return status::out_of_memory; | ||
|
||
acl_obj_->src_tensor.allocator()->init(almc.src_tensor_info); | ||
acl_obj_->wei_tensor.allocator()->init(almc.wei_tensor_info); | ||
if (almc.with_bias) { | ||
acl_obj_->bia_tensor.allocator()->init(almc.bia_tensor_info); | ||
} | ||
acl_obj_->dst_tensor.allocator()->init(almc.dst_tensor_info); | ||
|
||
acl_obj_->gemm.configure(&acl_obj_->src_tensor, &acl_obj_->wei_tensor, | ||
almc.with_bias ? &acl_obj_->bia_tensor : nullptr, | ||
&acl_obj_->dst_tensor); | ||
|
||
return status::success; | ||
} | ||
|
||
acl_lowp_matmul_obj_t &get_acl_obj() const { return *acl_obj_; } | ||
|
||
DNNL_DISALLOW_COPY_AND_ASSIGN(acl_lowp_matmul_resource_t); | ||
|
||
private: | ||
std::unique_ptr<acl_lowp_matmul_obj_t> acl_obj_; | ||
}; | ||
|
||
struct acl_lowp_matmul_t : public primitive_t { | ||
struct pd_t : public dnnl::impl::cpu::matmul::cpu_matmul_pd_t { | ||
|
||
pd_t(const matmul_desc_t *adesc, const primitive_attr_t *attr, | ||
const cpu_matmul_pd_t *hint_fwd_pd) | ||
: cpu_matmul_pd_t(adesc, attr, hint_fwd_pd), almc_() {} | ||
|
||
using cpu_matmul_pd_t::cpu_matmul_pd_t; | ||
|
||
DECLARE_COMMON_PD_T( | ||
"lowp_gemm:acl", acl_lowp_matmul_t, USE_GLOBAL_SCRATCHPAD); | ||
|
||
status_t init(engine_t *engine) { | ||
|
||
VDISPATCH_MATMUL( | ||
set_default_formats(), "failed to set default formats"); | ||
using smask_t = primitive_attr_t::skip_mask_t; | ||
VDISPATCH_MATMUL(attr()->has_default_values(smask_t::scales_runtime | ||
| smask_t::zero_points_runtime), | ||
"only scale and zero point attrs supported"); | ||
|
||
// Note that has_default_values checks the argument for default zero | ||
// points but skips the argument for scales. Hence they are the | ||
// opposite but mean similar things | ||
VDISPATCH_MATMUL(attr()->scales_.has_default_values( | ||
{DNNL_ARG_SRC, DNNL_ARG_WEIGHTS}), | ||
"only src and weights scales are supported"); | ||
VDISPATCH_MATMUL( | ||
attr()->zero_points_.has_default_values(DNNL_ARG_DST), | ||
"only src and weights zero points are supported"); | ||
|
||
VDISPATCH_MATMUL(attr()->scales_.get(DNNL_ARG_SRC).mask_ == 0 | ||
&& attr()->zero_points_.get(DNNL_ARG_SRC) == 0 | ||
&& attr()->scales_.get(DNNL_ARG_WEIGHTS).mask_ == 0 | ||
&& attr()->zero_points_.get(DNNL_ARG_WEIGHTS) == 0, | ||
"common scales and zero points only"); | ||
|
||
VDISPATCH_MATMUL(!has_runtime_dims_or_strides(), | ||
VERBOSE_RUNTIMEDIM_UNSUPPORTED); | ||
|
||
const memory_desc_wrapper src_d(src_md_); | ||
const memory_desc_wrapper wei_d(weights_md_); | ||
const memory_desc_wrapper bia_d(bias_md_); | ||
const memory_desc_wrapper dst_d(dst_md_); | ||
|
||
using namespace data_type; | ||
VDISPATCH_MATMUL(src_d.data_type() == s8 && wei_d.data_type() == s8 | ||
&& dst_d.data_type() == f32 | ||
&& utils::one_of(bia_d.data_type(), f32, undef), | ||
VERBOSE_UNSUPPORTED_DT_CFG); | ||
|
||
VDISPATCH_MATMUL(src_d.matches_tag(format_tag::ab) | ||
&& wei_d.matches_tag(format_tag::ab) | ||
&& dst_d.matches_tag(format_tag::ab), | ||
VERBOSE_UNSUPPORTED_TAG); | ||
|
||
VDISPATCH_MATMUL_SC( | ||
memory_desc_init_by_tag(bias_md_, bias_md_.ndims, | ||
bias_md_.dims, bias_md_.data_type, format_tag::ab), | ||
VERBOSE_UNSUPPORTED_BIAS_CFG); | ||
|
||
// We set the QuantizationInfo to be dynamic because it is re-set in run() | ||
almc_.src_tensor_info = arm_compute::TensorInfo( | ||
arm_compute::TensorShape(K(), M()), 1, | ||
arm_compute::DataType::QASYMM8_SIGNED, | ||
arm_compute::QuantizationInfo(1.0, 0, true)); | ||
almc_.src_tensor_info.set_are_values_constant(false); | ||
|
||
almc_.wei_tensor_info = arm_compute::TensorInfo( | ||
arm_compute::TensorShape(N(), K()), 1, | ||
arm_compute::DataType::QASYMM8_SIGNED, | ||
arm_compute::QuantizationInfo(1.0, 0, true)); | ||
almc_.wei_tensor_info.set_are_values_constant(false); | ||
|
||
almc_.bia_tensor_info = arm_compute::TensorInfo( | ||
arm_compute::TensorShape(), 1, arm_compute::DataType::F32); | ||
almc_.with_bias = bia_d.format_kind() != format_kind::undef; | ||
if (almc_.with_bias) { | ||
// This is not currently guarded in ACL | ||
VDISPATCH_MATMUL(bia_d.ndims() == 2 && bia_d.dims()[0] == 1 | ||
&& bia_d.dims()[1] == N(), | ||
"Only 1xN bias is supported"); | ||
almc_.bia_tensor_info.set_tensor_shape(arm_compute::TensorShape( | ||
bia_d.dims()[1], bia_d.dims()[0])); | ||
} | ||
|
||
almc_.dst_tensor_info = arm_compute::TensorInfo( | ||
arm_compute::TensorShape(N(), M()), | ||
arm_compute::Format::F32); | ||
|
||
ACL_CHECK_VALID(arm_compute::NEGEMMLowpMatrixMultiplyCore::validate( | ||
&almc_.src_tensor_info, &almc_.wei_tensor_info, | ||
almc_.with_bias ? &almc_.bia_tensor_info : nullptr, | ||
&almc_.dst_tensor_info, arm_compute::GEMMInfo())); | ||
|
||
return status::success; | ||
} | ||
|
||
acl_lowp_matmul_conf_t almc_; | ||
}; | ||
|
||
acl_lowp_matmul_t(const pd_t *apd) : primitive_t(apd) {} | ||
|
||
status_t create_resource( | ||
engine_t *engine, resource_mapper_t &mapper) const { | ||
|
||
if (mapper.has_resource(this)) return status::success; | ||
|
||
auto r = utils::make_unique<acl_lowp_matmul_resource_t>(); | ||
if (!r) return status::out_of_memory; | ||
|
||
CHECK(r->configure(pd()->almc_)); | ||
|
||
mapper.add(this, std::move(r)); | ||
|
||
return status::success; | ||
} | ||
|
||
status_t execute(const exec_ctx_t &ctx) const { | ||
std::lock_guard<std::mutex> _lock {this->mtx}; | ||
|
||
bool with_bias = pd()->almc_.with_bias; | ||
|
||
acl_lowp_matmul_obj_t &acl_obj | ||
= ctx.get_resource_mapper() | ||
->get<acl_lowp_matmul_resource_t>(this) | ||
->get_acl_obj(); | ||
|
||
auto src = CTX_IN_MEM(const int8_t *, DNNL_ARG_SRC); | ||
auto wei = CTX_IN_MEM(const int8_t *, DNNL_ARG_WEIGHTS); | ||
auto dst = CTX_OUT_MEM(float *, DNNL_ARG_DST); | ||
|
||
acl_obj.src_tensor.allocator()->import_memory( | ||
const_cast<int8_t *>(src)); | ||
acl_obj.wei_tensor.allocator()->import_memory( | ||
const_cast<int8_t *>(wei)); | ||
if (with_bias) { | ||
auto bias = CTX_IN_MEM(const float *, DNNL_ARG_BIAS); | ||
acl_obj.bia_tensor.allocator()->import_memory( | ||
const_cast<float *>(bias)); | ||
} | ||
acl_obj.dst_tensor.allocator()->import_memory(dst); | ||
|
||
DEFINE_ARG_SCALES_BUFFER(src_scale, DNNL_ARG_SRC); | ||
DEFINE_ZERO_POINT_VALUE(src_zero_point, DNNL_ARG_SRC); | ||
DEFINE_ARG_SCALES_BUFFER(wei_scale, DNNL_ARG_WEIGHTS); | ||
DEFINE_ZERO_POINT_VALUE(wei_zero_point, DNNL_ARG_WEIGHTS); | ||
|
||
// Note that we set the offset to be -zero_point, this is a known | ||
// inconsistency with most other operators in the ACL API | ||
acl_obj.src_tensor.info()->set_quantization_info( | ||
arm_compute::QuantizationInfo( | ||
*src_scale, -src_zero_point, true)); | ||
|
||
acl_obj.wei_tensor.info()->set_quantization_info( | ||
arm_compute::QuantizationInfo( | ||
*wei_scale, -wei_zero_point, true)); | ||
|
||
acl_obj.gemm.run(); | ||
|
||
// free() here tells ACL it can no longer use it, it does not deallocate | ||
acl_obj.src_tensor.allocator()->free(); | ||
acl_obj.wei_tensor.allocator()->free(); | ||
if (with_bias) { acl_obj.bia_tensor.allocator()->free(); } | ||
acl_obj.dst_tensor.allocator()->free(); | ||
|
||
return status::success; | ||
}; | ||
|
||
private: | ||
mutable std::mutex mtx; | ||
const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); } | ||
}; | ||
|
||
} // namespace matmul | ||
} // namespace aarch64 | ||
} // namespace cpu | ||
} // namespace impl | ||
} // namespace dnnl | ||
|
||
#endif // CPU_AARCH64_ACL_LOWP_MATMUL_HPP |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters