-
Notifications
You must be signed in to change notification settings - Fork 24
/
main_run.py
239 lines (205 loc) · 8.34 KB
/
main_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import torch
import glob
from torch import optim
import numpy as np
import time
import argparse
from load_data import NUM_WRITERS
from network_tro import ConTranModel
from load_data import loadData as load_data_func
from loss_tro import CER
parser = argparse.ArgumentParser(description='seq2seq net', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('start_epoch', type=int, help='load saved weights from which epoch')
args = parser.parse_args()
gpu = torch.device('cuda')
OOV = True
NUM_THREAD = 2
EARLY_STOP_EPOCH = None
EVAL_EPOCH = 20
MODEL_SAVE_EPOCH = 200
show_iter_num = 500
LABEL_SMOOTH = True
Bi_GRU = True
VISUALIZE_TRAIN = True
BATCH_SIZE = 8
lr_dis = 1 * 1e-4
lr_gen = 1 * 1e-4
lr_rec = 1 * 1e-5
lr_cla = 1 * 1e-5
CurriculumModelID = args.start_epoch
def all_data_loader():
data_train, data_test = load_data_func(OOV)
train_loader = torch.utils.data.DataLoader(data_train, collate_fn=sort_batch, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_THREAD, pin_memory=True)
test_loader = torch.utils.data.DataLoader(data_test, collate_fn=sort_batch, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_THREAD, pin_memory=True)
return train_loader, test_loader
def sort_batch(batch):
train_domain = list()
train_wid = list()
train_idx = list()
train_img = list()
train_img_width = list()
train_label = list()
img_xts = list()
label_xts = list()
label_xts_swap = list()
for domain, wid, idx, img, img_width, label, img_xt, label_xt, label_xt_swap in batch:
if wid >= NUM_WRITERS:
print('error!')
train_domain.append(domain)
train_wid.append(wid)
train_idx.append(idx)
train_img.append(img)
train_img_width.append(img_width)
train_label.append(label)
img_xts.append(img_xt)
label_xts.append(label_xt)
label_xts_swap.append(label_xt_swap)
train_domain = np.array(train_domain)
train_idx = np.array(train_idx)
train_wid = np.array(train_wid, dtype='int64')
train_img = np.array(train_img, dtype='float32')
train_img_width = np.array(train_img_width, dtype='int64')
train_label = np.array(train_label, dtype='int64')
img_xts = np.array(img_xts, dtype='float32')
label_xts = np.array(label_xts, dtype='int64')
label_xts_swap = np.array(label_xts_swap, dtype='int64')
train_wid = torch.from_numpy(train_wid)
train_img = torch.from_numpy(train_img)
train_img_width = torch.from_numpy(train_img_width)
train_label = torch.from_numpy(train_label)
img_xts = torch.from_numpy(img_xts)
label_xts = torch.from_numpy(label_xts)
label_xts_swap = torch.from_numpy(label_xts_swap)
return train_domain, train_wid, train_idx, train_img, train_img_width, train_label, img_xts, label_xts, label_xts_swap
def train(train_loader, model, dis_opt, gen_opt, rec_opt, cla_opt, epoch):
model.train()
loss_dis = list()
loss_dis_tr = list()
loss_cla = list()
loss_cla_tr = list()
loss_l1 = list()
loss_rec = list()
loss_rec_tr = list()
time_s = time.time()
cer_tr = CER()
cer_te = CER()
cer_te2 = CER()
for train_data_list in train_loader:
'''rec update'''
rec_opt.zero_grad()
l_rec_tr = model(train_data_list, epoch, 'rec_update', cer_tr)
rec_opt.step()
'''classifier update'''
cla_opt.zero_grad()
l_cla_tr = model(train_data_list, epoch, 'cla_update')
cla_opt.step()
'''dis update'''
dis_opt.zero_grad()
l_dis_tr = model(train_data_list, epoch, 'dis_update')
dis_opt.step()
'''gen update'''
gen_opt.zero_grad()
l_total, l_dis, l_cla, l_l1, l_rec = model(train_data_list, epoch, 'gen_update', [cer_te, cer_te2])
gen_opt.step()
loss_dis.append(l_dis.cpu().item())
loss_dis_tr.append(l_dis_tr.cpu().item())
loss_cla.append(l_cla.cpu().item())
loss_cla_tr.append(l_cla_tr.cpu().item())
loss_l1.append(l_l1.cpu().item())
loss_rec.append(l_rec.cpu().item())
loss_rec_tr.append(l_rec_tr.cpu().item())
fl_dis = np.mean(loss_dis)
fl_dis_tr = np.mean(loss_dis_tr)
fl_cla = np.mean(loss_cla)
fl_cla_tr = np.mean(loss_cla_tr)
fl_l1 = np.mean(loss_l1)
fl_rec = np.mean(loss_rec)
fl_rec_tr = np.mean(loss_rec_tr)
res_cer_tr = cer_tr.fin()
res_cer_te = cer_te.fin()
res_cer_te2 = cer_te2.fin()
print('epo%d <tr>-<gen>: l_dis=%.2f-%.2f, l_cla=%.2f-%.2f, l_rec=%.2f-%.2f, l1=%.2f, cer=%.2f-%.2f-%.2f, time=%.1f' % (epoch, fl_dis_tr, fl_dis, fl_cla_tr, fl_cla, fl_rec_tr, fl_rec, fl_l1, res_cer_tr, res_cer_te, res_cer_te2, time.time()-time_s))
return res_cer_te + res_cer_te2
def test(test_loader, epoch, modelFile_o_model):
if type(modelFile_o_model) == str:
model = ConTranModel(NUM_WRITERS, show_iter_num, OOV).to(gpu)
print('Loading ' + modelFile_o_model)
model.load_state_dict(torch.load(modelFile_o_model)) #load
else:
model = modelFile_o_model
model.eval()
loss_dis = list()
loss_cla = list()
loss_rec = list()
time_s = time.time()
cer_te = CER()
cer_te2 = CER()
for test_data_list in test_loader:
l_dis, l_cla, l_rec = model(test_data_list, epoch, 'eval', [cer_te, cer_te2])
loss_dis.append(l_dis.cpu().item())
loss_cla.append(l_cla.cpu().item())
loss_rec.append(l_rec.cpu().item())
fl_dis = np.mean(loss_dis)
fl_cla = np.mean(loss_cla)
fl_rec = np.mean(loss_rec)
res_cer_te = cer_te.fin()
res_cer_te2 = cer_te2.fin()
print('EVAL: l_dis=%.3f, l_cla=%.3f, l_rec=%.3f, cer=%.2f-%.2f, time=%.1f' % (fl_dis, fl_cla, fl_rec, res_cer_te, res_cer_te2, time.time()-time_s))
def main(train_loader, test_loader, num_writers):
model = ConTranModel(num_writers, show_iter_num, OOV).to(gpu)
if CurriculumModelID > 0:
model_file = 'save_weights/contran-' + str(CurriculumModelID) +'.model'
print('Loading ' + model_file)
model.load_state_dict(torch.load(model_file)) #load
#pretrain_dict = torch.load(model_file)
#model_dict = model.state_dict()
#pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and not k.startswith('gen.enc_text.fc')}
#model_dict.update(pretrain_dict)
#model.load_state_dict(model_dict)
dis_params = list(model.dis.parameters())
gen_params = list(model.gen.parameters())
rec_params = list(model.rec.parameters())
cla_params = list(model.cla.parameters())
dis_opt = optim.Adam([p for p in dis_params if p.requires_grad], lr=lr_dis)
gen_opt = optim.Adam([p for p in gen_params if p.requires_grad], lr=lr_gen)
rec_opt = optim.Adam([p for p in rec_params if p.requires_grad], lr=lr_rec)
cla_opt = optim.Adam([p for p in cla_params if p.requires_grad], lr=lr_cla)
epochs = 50001
min_cer = 1e5
min_idx = 0
min_count = 0
for epoch in range(CurriculumModelID, epochs):
cer = train(train_loader, model, dis_opt, gen_opt, rec_opt, cla_opt, epoch)
if epoch % MODEL_SAVE_EPOCH == 0:
folder_weights = 'save_weights'
if not os.path.exists(folder_weights):
os.makedirs(folder_weights)
torch.save(model.state_dict(), folder_weights+'/contran-%d.model'%epoch)
if epoch % EVAL_EPOCH == 0:
test(test_loader, epoch, model)
if EARLY_STOP_EPOCH is not None:
if min_cer > cer:
min_cer = cer
min_idx = epoch
min_count = 0
rm_old_model(min_idx)
else:
min_count += 1
if min_count >= EARLY_STOP_EPOCH:
print('Early stop at %d and the best epoch is %d' % (epoch, min_idx))
model_url = 'save_weights/contran-'+str(min_idx)+'.model'
os.system('mv '+model_url+' '+model_url+'.bak')
os.system('rm save_weights/contran-*.model')
break
def rm_old_model(index):
models = glob.glob('save_weights/*.model')
for m in models:
epoch = int(m.split('.')[0].split('-')[1])
if epoch < index:
os.system('rm save_weights/contran-'+str(epoch)+'.model')
if __name__ == '__main__':
print(time.ctime())
train_loader, test_loader = all_data_loader()
main(train_loader, test_loader, NUM_WRITERS)
print(time.ctime())