-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
286 lines (253 loc) · 14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import os, time
from tqdm import trange
from os import path
import tensorflow as tf
from tensorflow.contrib.tpu.python.tpu import tpu_config # pylint: disable=E0611
from tensorflow.contrib.tpu.python.tpu import tpu_estimator # pylint: disable=E0611
from tensorflow.contrib.tpu.python.tpu import tpu_optimizer # pylint: disable=E0611
from tensorflow.python.estimator import estimator # pylint: disable=E0611
from tensorboard.plugins.beholder import Beholder
from tensorboard.plugins.beholder import BeholderHook
import input_pipelines, utils, models, ops
DRY_RUN = False
def lerp_update_ops(resolution, value):
name = str(resolution) + 'x' + str(resolution)
gt = tf.get_default_graph().get_tensor_by_name('Generator/'+name+'_t:0')
assert(gt is not None)
dt = tf.get_default_graph().get_tensor_by_name('Discriminator/'+name+'_t:0')
assert(dt is not None)
return [tf.assign(gt, value), tf.assign(dt, value)]
def model_fn(features, labels, mode, cfg):
del labels
resolution = features['resolution']
if mode == 'PREDICT':
random_noise = features['random_noise'] * cfg.temperature
return models.generator(random_noise, resolution, cfg, is_training=False)
real_images_1 = features['real_images']
if cfg.data_format == 'NCHW':
real_images_1 = utils.nchw_to_nhwc(real_images_1)
real_images_2 = tf.image.flip_left_right(real_images_1)
real_images_1 = utils.nhwc_to_nchw(real_images_1)
real_images_2 = utils.nhwc_to_nchw(real_images_2)
else:
real_images_2 = tf.image.flip_left_right(real_images_1)
random_noise_1 = features['random_noise_1']
fake_images_out_1 = models.generator(random_noise_1, resolution, cfg, is_training=True)
real_scores_out = models.discriminator(real_images_1, resolution, cfg)
fake_scores_out = models.discriminator(fake_images_out_1, resolution, cfg)
#fake_scores_out_g = models.discriminator(fake_images_out_2, resolution, cfg)
with tf.name_scope('Penalties'):
d_loss = fake_scores_out - real_scores_out
g_loss = -1.0 * fake_scores_out
with tf.name_scope('GradientPenalty'):
mixing_factors = tf.random_uniform([int(real_images_1.get_shape()[0]), 1, 1, 1], 0.0, 1.0, dtype=fake_images_out_1.dtype)
mixed_images_out = ops.lerp(real_images_1, real_images_2, mixing_factors)
mixed_scores_out = models.discriminator(mixed_images_out, resolution, cfg)
mixed_loss = tf.reduce_sum(mixed_scores_out)
mixed_grads = tf.gradients(mixed_loss, [mixed_images_out])[0]
mixed_norms = tf.sqrt(1e-8 + tf.reduce_sum(tf.square(mixed_grads), axis=[1,2,3]))
gradient_penalty = tf.square(mixed_norms - 1.0)
d_loss += gradient_penalty * 10.0
with tf.name_scope('EpsilonPenalty'):
epsilon_penalty = tf.square(real_scores_out)
d_loss += epsilon_penalty * 0.001
resolution_step = utils.get_or_create_resolution_step()
fadein_rate = tf.minimum(tf.cast(resolution_step, tf.float32) / float(cfg.fadein_steps), 1.0)
learning_rate = cfg.base_learning_rate
d_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=cfg.beta1, beta2=cfg.beta2, epsilon=cfg.eps, name="AdamD")
g_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=cfg.beta1, beta2=cfg.beta2, epsilon=cfg.eps, name="AdamG")
if cfg.data_format == 'NCHW':
fake_images_out_1 = utils.nchw_to_nhwc(fake_images_out_1)
real_images_1 = utils.nchw_to_nhwc(real_images_1)
real_images_2 = utils.nchw_to_nhwc(real_images_2)
mixed_images_out = utils.nchw_to_nhwc(mixed_images_out)
tf.summary.image('generated_images', fake_images_out_1)
tf.summary.image('real_images_1', real_images_1)
tf.summary.image('real_images_2', real_images_2)
tf.summary.image('mixed_images', mixed_images_out)
with tf.variable_scope("Loss"):
tf.summary.scalar('real_scores_out', tf.reduce_mean(real_scores_out))
tf.summary.scalar('fake_scores_out', tf.reduce_mean(fake_scores_out))
tf.summary.scalar('epsilon_penalty', tf.reduce_mean(epsilon_penalty))
tf.summary.scalar('mixed_norms', tf.reduce_mean(mixed_norms))
with tf.variable_scope("Rate"):
tf.summary.scalar('fadein', fadein_rate)
g_loss = tf.reduce_mean(g_loss)
d_loss = tf.reduce_mean(d_loss)
with tf.name_scope('TrainOps'):
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
d_step = d_optimizer.minimize(
d_loss,
var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='Discriminator'))
g_step = g_optimizer.minimize(
g_loss,
var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='Generator'))
with tf.control_dependencies([g_step, d_step]):
increment_global_step = tf.assign_add(
tf.train.get_or_create_global_step(), 1)
increment_resolution_step = tf.assign_add(
utils.get_or_create_resolution_step(), 1)
if resolution>=cfg.starting_resolution * 2:
with tf.control_dependencies([increment_global_step, increment_resolution_step]):
lerp_ops = lerp_update_ops(resolution, fadein_rate)
joint_op = tf.group([d_step, g_step, lerp_ops[0], lerp_ops[1], increment_global_step, increment_resolution_step])
else:
joint_op = tf.group([d_step, g_step, increment_global_step, increment_resolution_step])
return joint_op, [g_loss, d_loss], [g_optimizer, d_optimizer]
def generate_step(cfg, resolution):
graph = tf.Graph()
restore_dir = os.path.join(cfg.model_dir, 'resolution_' + str(resolution))
with graph.as_default(): # pylint: disable=E1129
input = input_pipelines.PredictInputFunction(cfg.noise_dim, resolution)
params = {'data_dir' : cfg.data_dir, 'batch_size' : cfg.num_eval_images }
features, labels = input(params)
model = model_fn(features, labels, 'PREDICT', cfg)
global_step = tf.train.get_or_create_global_step()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
utils.restore(sess, restore_dir)
images = sess.run(model)
utils.write_images(images, cfg.model_dir+'/'+str(global_step.eval()).zfill(6)+'-'+str(resolution)+'.png', cfg.data_format)
tf.reset_default_graph()
def train_step(cfg, resolution, restore_dir, store_dir):
batch_size = cfg.resolution_to_batch_size[resolution]
graph = tf.Graph()
tf.gfile.MakeDirs(store_dir)
ckpt_file = store_dir + '/model.ckp'
global_step_value = 0
with graph.as_default(): # pylint: disable=E1129
train_input = input_pipelines.TrainInputFunction(True, cfg.noise_dim, resolution, cfg.data_format)
params = {'data_dir' : cfg.data_dir, 'batch_size' : batch_size }
features, labels = train_input(params)
train_ops,[g_loss, d_loss],[g_optimizer, d_optimizer] = model_fn(features, labels, 'TRAIN', cfg)
global_step = tf.train.get_or_create_global_step()
summary = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
utils.restore(sess, restore_dir)
saver = tf.train.Saver(name='main_saver')
global_step_value = global_step.eval()
if global_step_value == 0:
utils.print_layers('Generator')
utils.print_layers('Discriminator')
if restore_dir != store_dir and restore_dir is not None:
utils.print_layers('Generator')
utils.print_layers('Discriminator')
utils.reset_resolution_step()
sess.run(tf.variables_initializer(d_optimizer.variables()))
sess.run(tf.variables_initializer(g_optimizer.variables()))
saver.save(sess, ckpt_file, global_step = global_step)
resolution_summary_writer = tf.summary.FileWriter(store_dir, sess.graph)
start_time = time.time()
for _ in range(cfg.train_steps_before_eval // cfg.iterations_per_loop):
start_time = time.time()
for _ in trange(cfg.iterations_per_loop, leave=False):
sess.run(train_ops)
if global_step % cfg.resolution_steps == 0 and resolution != cfg.maximum_resolution:
break
elapsed_time = time.time() - start_time
g_loss_value, d_loss_value, global_step_value = sess.run([g_loss, d_loss, global_step])
tf.logging.info('Step %d - g_loss %f, d_loss %f, Sec/Step %f' % (global_step_value, g_loss_value, d_loss_value, elapsed_time / cfg.iterations_per_loop))
summary_str = sess.run(summary)
resolution_summary_writer.add_summary(summary_str, global_step_value)
resolution_summary_writer.flush()
if global_step % cfg.resolution_steps == 0 and resolution != cfg.maximum_resolution:
break
global_step_value = global_step.eval()
tf.logging.info('Saving parameters to %s' % (ckpt_file))
saver.save(sess, ckpt_file, global_step = global_step)
tf.reset_default_graph()
return global_step_value
def train(cfg):
tf.gfile.MakeDirs(os.path.join(cfg.model_dir))
resolution = cfg.maximum_resolution
initial_checkpoint = None
while initial_checkpoint is None and resolution != 1:
restore_dir = os.path.join(cfg.model_dir, 'resolution_' + str(resolution))
initial_checkpoint = tf.train.latest_checkpoint(restore_dir)
resolution = resolution // 2
if initial_checkpoint is None or resolution == 1:
resolution = cfg.starting_resolution
restore_dir = None
else:
resolution *= 2
restore_dir = os.path.join(cfg.model_dir, 'resolution_' + str(resolution))
tf.logging.info('Starting training for %d steps' % (cfg.train_steps))
global_step = 0
while global_step < cfg.train_steps:
store_dir = os.path.join(cfg.model_dir, 'resolution_' + str(resolution))
global_step = train_step(cfg, resolution, restore_dir, store_dir)
restore_dir = store_dir
tf.logging.info('Finished training for step %d' % (global_step))
generate_step(cfg, resolution)
tf.logging.info('Finished generating images for step %d' % (global_step))
if global_step % cfg.resolution_steps == 0 and resolution != cfg.maximum_resolution:
resolution *= 2
tf.logging.info('Change of resolution from %d to %d' % (resolution // 2, resolution))
restore_dir = os.path.join(cfg.model_dir, 'resolution_' + str(resolution // 2))
def main(cfg):
train(cfg)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
# Optimization hyperparams:
parser.add_argument("--train_steps", type=int, default=500000,
help="Total train steps")
parser.add_argument("--train_steps_before_eval", type=int, default=20 if DRY_RUN else 1000,
help="Train steps before evaluation")
parser.add_argument("--resolution_steps", type=int, default= 30 if DRY_RUN else 10000,
help="Train steps for each resolution")
parser.add_argument("--fadein_steps", type=int, default=29 if DRY_RUN else 8000,
help="Fadein steps for each resolution")
parser.add_argument("--warmup_steps", type=int, default=5 if DRY_RUN else 800,
help="Warmup steps for learning rate")
parser.add_argument("--iterations_per_loop", type=int, default=5 if DRY_RUN else 100,
help="Interations per loop")
parser.add_argument("--num_eval_images", type=int, default=100,
help="Number of images for evaluation")
parser.add_argument("--base_learning_rate", type=float, default=0.0005,
help="Base learning rate")
parser.add_argument("--temperature", type=float, default=.9, help="temperature")
parser.add_argument("--beta1", type=float, default=.0, help="beta1")
parser.add_argument("--beta2", type=float, default=.99, help="beta2")
parser.add_argument("--eps", type=float, default=1e-6, help="eps")
parser.add_argument("--report_histograms", type=bool, default=False,
help="If should report histograms")
# Model hyperparams:
parser.add_argument("--noise_dim", type=int, default=512,
help="Noise dimension")
parser.add_argument("--starting_resolution", type=int, default=8,
help="Starting resolution")
parser.add_argument("--maximum_resolution", type=int, default=128,
help="Maximum resolution")
parser.add_argument("--data_format", type=str, default='NHWC',
help="Either NCHW or NHWC")
# dataset
parser.add_argument("--data_dir", type=str, default='C:/Projects/datasets/tfr-celeba128',
help="Bucket/Folder that contains the data tfrecord files")
parser.add_argument("--model_dir", type=str, default='./output',
help="Output model directory")
cfg = parser.parse_args()
cfg.resolution_to_filt_num = {
2: 512,
4: 512,
8: 256,
16: 256,
32: 256,
64: 128,
128: 64
}
cfg.resolution_to_batch_size = {
4: 128,
8: 128,
16: 128,
32: 64,
64: 64,
128: 32
}
os.environ['TF_CPP_MIN_VLOG_LEVEL'] = '1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
tf.logging.set_verbosity(tf.logging.INFO)
main(cfg)