-
Notifications
You must be signed in to change notification settings - Fork 79
/
train_video.py
104 lines (87 loc) · 3.22 KB
/
train_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import datetime
import random
from argparse import ArgumentParser
from pathlib import Path
import numpy as np
import torch
import yaml
from tqdm import tqdm
from datasets.video_dataset import AtlasDataset
from models.video_model import VideoModel
from util.atlas_loss import AtlasLoss
from util.util import get_optimizer
from util.video_logger import DataLogger
def train_model(config):
# set seed
seed = config["seed"]
if seed == -1:
seed = np.random.randint(2 ** 32)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
print(f"running with seed: {seed}.")
dataset = AtlasDataset(config)
model = VideoModel(config)
criterion = AtlasLoss(config)
optimizer = get_optimizer(config, model.parameters())
logger = DataLogger(config, dataset)
with tqdm(range(1, config["n_epochs"] + 1)) as tepoch:
for epoch in tepoch:
inputs = dataset[0]
optimizer.zero_grad()
outputs = model(inputs)
losses = criterion(outputs, inputs)
loss = 0.
if config["finetune_foreground"]:
loss += losses["foreground"]["loss"]
elif config["finetune_background"]:
loss += losses["background"]["loss"]
lr = optimizer.param_groups[0]["lr"]
log_data = logger.log_data(epoch, lr, losses, model, dataset)
loss.backward()
optimizer.step()
optimizer.param_groups[0]["lr"] = max(config["min_lr"], config["gamma"] * optimizer.param_groups[0]["lr"])
if config["use_wandb"]:
wandb.log(log_data)
else:
if epoch % config["log_images_freq"] == 0:
logger.save_locally(log_data)
tepoch.set_description(f"Epoch {epoch}")
tepoch.set_postfix(loss=loss.item())
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"--config",
default="./configs/video_config.yaml",
help="Config path",
)
parser.add_argument(
"--example_config",
default="car-turn_winter.yaml",
help="Example config name",
)
args = parser.parse_args()
config_path = args.config
with open(config_path, "r") as f:
config = yaml.safe_load(f)
with open(f"./configs/video_example_configs/{args.example_config}", "r") as f:
example_config = yaml.safe_load(f)
config["example_config"] = args.example_config
config.update(example_config)
run_name = f"-{config['checkpoint_path'].split('/')[-2]}"
if config["use_wandb"]:
import wandb
wandb.init(project=config["wandb_project"], entity=config["wandb_entity"], config=config, name=run_name)
wandb.run.name = str(wandb.run.id) + wandb.run.name
config = dict(wandb.config)
else:
now = datetime.datetime.now()
run_name = f"{now.strftime('%Y-%m-%d_%H-%M-%S')}{run_name}"
path = Path(f"{config['results_folder']}/{run_name}")
path.mkdir(parents=True, exist_ok=True)
with open(path / "config.yaml", "w") as f:
yaml.dump(config, f)
config["results_folder"] = str(path)
train_model(config)
if config["use_wandb"]:
wandb.finish()