-
Notifications
You must be signed in to change notification settings - Fork 79
/
train_image.py
131 lines (109 loc) · 4.15 KB
/
train_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import random
from argparse import ArgumentParser
import datetime
from pathlib import Path
import imageio
import numpy as np
import torch
import yaml
from tqdm import tqdm
from datasets.image_dataset import SingleImageDataset
from models.clip_extractor import ClipExtractor
from models.image_model import Model
from util.losses import LossG
from util.util import tensor2im, get_optimizer
def train_model(config):
# set seed
seed = config["seed"]
if seed == -1:
seed = np.random.randint(2 ** 32)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
print(f"running with seed: {seed}.")
# create dataset, loader
dataset = SingleImageDataset(config)
# define model
model = Model(config)
# define loss function
clip_extractor = ClipExtractor(config)
criterion = LossG(config, clip_extractor)
# define optimizer, scheduler
optimizer = get_optimizer(config, model.parameters())
for epoch in tqdm(range(1, config["n_epochs"] + 1)):
inputs = dataset[0]
for key in inputs:
if key != "step":
inputs[key] = inputs[key].to(config["device"])
optimizer.zero_grad()
outputs = model(inputs)
for key in inputs:
if key != "step":
inputs[key] = [inputs[key][0]]
losses = criterion(outputs, inputs)
loss_G = losses["loss"]
log_data = losses
log_data["epoch"] = epoch
# log current generated image to wandb
if epoch % config["log_images_freq"] == 0:
src_img = dataset.get_img().to(config["device"])
with torch.no_grad():
output = model.render(model.netG(src_img), bg_image=src_img)
for layer_name, layer_img in output.items():
image_numpy_output = tensor2im(layer_img)
log_data[layer_name] = [wandb.Image(image_numpy_output)] if config["use_wandb"] else image_numpy_output
loss_G.backward()
optimizer.step()
# update learning rate
if config["scheduler_policy"] == "exponential":
optimizer.param_groups[0]["lr"] = max(config["min_lr"], config["gamma"] * optimizer.param_groups[0]["lr"])
lr = optimizer.param_groups[0]["lr"]
log_data["lr"] = lr
if config["use_wandb"]:
wandb.log(log_data)
else:
if epoch % config["log_images_freq"] == 0:
save_locally(config["results_folder"], log_data)
def save_locally(results_folder, log_data):
path = Path(results_folder, str(log_data["epoch"]))
path.mkdir(parents=True, exist_ok=True)
for key in log_data.keys():
if key in ["composite", "alpha", "edit_on_greenscreen", "edit"]:
imageio.imwrite(f"{path}/{key}.png", log_data[key])
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"--config",
default="./configs/image_config.yaml",
help="Config path",
)
parser.add_argument(
"--example_config",
default="golden_horse.yaml",
help="Example config name",
)
args = parser.parse_args()
config_path = args.config
with open(config_path, "r") as f:
config = yaml.safe_load(f)
with open(f"./configs/image_example_configs/{args.example_config}", "r") as f:
example_config = yaml.safe_load(f)
config["example_config"] = args.example_config
config.update(example_config)
run_name = f"-{config['image_path'].split('/')[-1]}"
if config["use_wandb"]:
import wandb
wandb.init(project=config["wandb_project"], entity=config["wandb_entity"], config=config, name=run_name)
wandb.run.name = str(wandb.run.id) + wandb.run.name
config = dict(wandb.config)
else:
now = datetime.datetime.now()
run_name = f"{now.strftime('%Y-%m-%d_%H-%M-%S')}{run_name}"
path = Path(f"{config['results_folder']}/{run_name}")
path.mkdir(parents=True, exist_ok=True)
with open(path / "config.yaml", "w") as f:
yaml.dump(config, f)
config["results_folder"] = str(path)
train_model(config)
if config["use_wandb"]:
wandb.finish()