-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotebook1 backup 1.jl
1542 lines (1217 loc) · 52.3 KB
/
notebook1 backup 1.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.19.46
#> [frontmatter]
#> chapter = 1
#> video = "https://www.youtube.com/watch?v=3zTO3LEY-cM"
#> image = "https://user-images.githubusercontent.com/6933510/136196634-2294d0a7-e79a-40d0-bbb8-81da70f4d398.png"
#> section = 1
#> order = 1
#> title = "Images as Data and Arrays"
#> layout = "layout.jlhtml"
#> youtube_id = "3zTO3LEY-cM"
#> description = ""
#> tags = ["lecture", "module1", "philip", "track_julia", "matrix", "image"]
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# ╔═╡ 74b008f6-ed6b-11ea-291f-b3791d6d1b35
begin
using Colors, ColorVectorSpace, ImageShow, FileIO, ImageIO
using PlutoUI
using PlutoTeachingTools
using HypertextLiteral
end
# ╔═╡ d07fcdb0-7afc-4a25-b68a-49fd1e3405e7
PlutoUI.TableOfContents(aside=true)
# ╔═╡ 9b49500c-0164-4556-a17b-7595e35c5ede
md"""
#### Initializing packages
_When running this notebook for the first time, this could take up to 15 minutes. Hang in there!_
"""
# ╔═╡ ca1b507e-6017-11eb-34e6-6b85cd189002
md"""
# Images as examples of data all around us
Welcome to the Computational Thinking using Julia for Real-World Problems, at MIT in Fall 2024!
The aim of this course is to bring together concepts from computer science and applied math with coding in the modern **Julia language**, and to see how to apply these techniques to study interesting applications (and of course to have fun).
We would be pleased if students who have been interested in computer science now become interested in computational science and those interested in scientific applications learn computer science they may not see elsewhere.
... and for all students, we wish to share the value of
the Julia language as the best of both worlds.
"""
# ╔═╡ e9ff96d8-6bc1-11eb-0f6a-234b9fae047e
md"""
## Alan's Essay: Are all programming languages the same?
>Superficially, many programming languages are very similar. "Showoffs" will compare functional programming vs imperative programming. Others will compare compiled languages vs dynamic languages. I will avoid such fancy terms in this little essay, preferring to provide this course's pedagogical viewpoint.
>
>Generally speaking beginning programmers should learn to create "arrays" write "for loops", "conditionals", "comparisons", express mathematical formulas, etc. So why Julia at a time when Python seems to be the language of teaching, and Java and C++ so prominent in the corporate world?
>
>As you might imagine, we believe Julia is special. Oh you will still have the nitty gritty of when to use a bracket and a comma. You might have strong opinions as to whether arrays should begin with 0 or 1 (joke: some say it's time to compromise and use ½.) Getting past these irrelevant issues, you will begin to experience one by one what makes Julia so very special. For starters, a language that runs fast is more fun. We can have you try things that would just be so slow in other languages it would be boring. We also think you will start to notice how natural Julia is, how it feels like the mathematics, and how flexible it can be.
>
>Getting to see the true value of fancy terms like multiple dispatch, strong typing, generic programming, and composable software will take a little longer, but stick with us, and you too will see why Julia is so very special.
"""
# ╔═╡ 9111db10-6bc3-11eb-38e5-cf3f58536914
md"""
## Computer Science and Computational Science Working Together
"""
# ╔═╡ fb8a99ac-6bc1-11eb-0835-3146734a1c99
md"""
Applications of computer science in the real world use **data**, i.e. information that we can **measure** in some way. Data take many different forms, for example:
- Numbers that change over time (**time series**):
- Stock price each second / minute / day
- Weekly number of infections
- Earth's global average temperature
- Video:
- The view from a window of a self-driving car
- A hurricane monitoring station
- Ultrasound e.g. prenatal
- Images:
- Diseased versus healthy tissue in a medical scan
- Pictures of your favourite dog
"""
# ╔═╡ b795dcb4-6bc3-11eb-20ec-db2cc4b89bfb
md"""
#### Exercise:
> Think of another two examples in each category. Can you think of other categories of data?
"""
# ╔═╡ 8691e434-6bc4-11eb-07d1-8169158484e6
md"""
Computational science can be summed up by a simplified workflow:
"""
# ╔═╡ 546db74c-6d4e-11eb-2e27-f5bed9dbd9ba
md"""
## data ⟶ input ⟶ process ⟶ model ⟶ visualize ⟶ output
"""
# ╔═╡ 6385d174-6d4e-11eb-093b-6f6fafb79f84
md"""
$(html"<br>")
To use any data source, we need to **input** the data of interest, for example by downloading it, reading in the resulting file, and converting it into a form that we can use in the computer. Then we need to **process** it in some way to extract information of interest. We usually want to **visualize** the results, and we may want to **output** them, for example by saving to disc or putting them on a website.
We often want to make a mathematical or computational **model** that can help us to understand and predict the behavior of the system of interest.
> In this course we aim to show how programming, computer science and applied math combine to help us with these goals.
"""
# ╔═╡ 132f6596-6bc6-11eb-29f1-1b2478c929af
md"""
# Data: Images (as an example of data)
Let's start off by looking at **images** and how we can process them.
Our goal is to process the data contained in an image in some way, which we will do by developing and coding certain **algorithms**.
Here is the the Fall 2020 version of this lecture (small variations) by 3-Blue-1-Brown (Grant Sanderson) for your reference.
"""
# ╔═╡ e1bd938e-d067-4854-b5da-9aa71023d8a1
html"""
<script src="https://cdn.jsdelivr.net/npm/[email protected]/src/lite-yt-embed.js" integrity="sha256-wwYlfEzWnCf2nFlIQptfFKdUmBeH5d3G7C2352FdpWE=" crossorigin="anonymous" defer></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/src/lite-yt-embed.css" integrity="sha256-99PgDZnzzjO63EyMRZfwIIA+i+OS2wDx6k+9Eo7JDKo=" crossorigin="anonymous">
<lite-youtube videoid=DGojI9xcCfg params="modestbranding=1&rel=0"></lite-youtube>
"""
# ╔═╡ 9eb6efd2-6018-11eb-2db8-c3ce41d9e337
md"""
If we open an image on our computer or the web and zoom in enough, we will see that it consists of many tiny squares, or **pixels** ("picture elements"). Each pixel is a block of one single colour, and the pixels are arranged in a two-dimensional square grid.
You probably already know that these pixels are stored in a computer numerically
perhaps in some form of RGB (red,green,blue) format. This is the computer's representation of the data.
Note that an image is already an **approximation** of the real world -- it is a two-dimensional, discrete representation of a three-dimensional reality.
"""
# ╔═╡ e37e4d40-6018-11eb-3e1d-093266c98507
md"""
# Input and Visualize: loading and viewing an Image (in Julia)
"""
# ╔═╡ e1c9742a-6018-11eb-23ba-d974e57f78f9
md"""
Let's use Julia to load actual images and play around with them. We can download images from the internet, your own file, or your own webcam.
"""
# ╔═╡ 9b004f70-6bc9-11eb-128c-914eadfc9a0e
md"""
## Downloading an image from the internet or a local file
We can use the `Images.jl` package to load an image file in three steps.
"""
# ╔═╡ 62fa19da-64c6-11eb-0038-5d40a6890cf5
md"""
Step 1: (from internet) we specify the URL (web address) to download from:
$(html"<br>")
(note that Pluto places results before commands because some people believe
output is more interesting than code. This takes some getting used to.)
"""
# ╔═╡ 34ee0954-601e-11eb-1912-97dc2937fd52
url = "https://user-images.githubusercontent.com/6933510/107239146-dcc3fd00-6a28-11eb-8c7b-41aaf6618935.png"
# ╔═╡ 9180fbcc-601e-11eb-0c22-c920dc7ee9a9
md"""
Step 2: Now we use the aptly-named `download` function to download the image file to our own computer. (Philip is Prof. Edelman's corgi.)
"""
# ╔═╡ 34ffc3d8-601e-11eb-161c-6f9a07c5fd78
philip_filename = download(url) # download to a local file. The filename is returned
# ╔═╡ abaaa980-601e-11eb-0f71-8ff02269b775
md"""
Step 3:
Using the `Images.jl` package (loaded at the start of this notebook; scroll up and take a look.) we can **load** the file, which automatically converts it into usable data. We'll store the result in a variable. (Remember the code is after the output.)
"""
# ╔═╡ aafe76a6-601e-11eb-1ff5-01885c5238da
philip = load(philip_filename)
# ╔═╡ e86ed944-ee05-11ea-3e0f-d70fc73b789c
md"_Hi there Philip_"
# ╔═╡ c99d2aa8-601e-11eb-3469-497a246db17c
md"""
We see that the Pluto notebook has recognised that we created an object representing an image, and automatically displayed the resulting image of Philip, the cute Welsh Pembroke corgi and co-professor of this course.
Poor Philip will undergo quite a few transformations as we go along!
"""
# ╔═╡ 11dff4ce-6bca-11eb-1056-c1345c796ed4
md"""
👉 **Exercise:** change the url to use another image from the web.
"""
# ╔═╡ efef3a32-6bc9-11eb-17e9-dd2171be9c21
md"""
## Capturing an Image from your own camera
"""
# ╔═╡ e94dcc62-6d4e-11eb-3d53-ff9878f0091e
md"""
Even more fun is to use your own webcam. Try pressing the enable button below. Then
press the camera to capture an image. Kind of fun to keep pressing the button as you move your hand etc.
"""
# ╔═╡ bd0e4cfc-72bb-43c1-8178-63872f859fab
@bind myface1 PlutoUI.WebcamInput(help=false, max_size=150)
# ╔═╡ 6224c74b-8915-4983-abf0-30e6ba04a46d
[
myface1 myface1[ : , end:-1:1]
myface1[end:-1:1, :] myface1[end:-1:1, end:-1:1]
]
# ╔═╡ cef1a95a-64c6-11eb-15e7-636a3621d727
md"""
## Inspecting your data
"""
# ╔═╡ f26d9326-64c6-11eb-1166-5d82586422ed
md"""
### Image size
"""
# ╔═╡ 6f928b30-602c-11eb-1033-71d442feff93
md"""
The first thing we might want to know is the size of the image:
"""
# ╔═╡ 75c5c85a-602c-11eb-2fb1-f7e7f2c5d04b
philip_size = size(philip)
# ╔═╡ 77f93eb8-602c-11eb-1f38-efa56cc93ca5
md"""
Julia returns a pair of two numbers. Comparing these with the picture of the image, we see that the first number is the height, i.e. the vertical number of pixels, and the second is the width.
"""
# ╔═╡ 96b7d801-c427-4e27-ab1f-e2fd18fc24d0
philip_height = philip_size[1]
# ╔═╡ f08d02af-6e38-4ace-8b11-7af4930b64ea
philip_width = philip_size[2]
# ╔═╡ f9244264-64c6-11eb-23a6-cfa76f8aff6d
md"""
### Locations in an image: Indexing
Now suppose that we want to examine a piece of the image in more detail. We need some way of specifying which piece of the image we want.
Thinking of the image as a grid of pixels, we need a way to tell the computer which pixel or group of pixels we want to refer to.
Since the image is a two-dimensional grid, we can use two integers (whole numbers) to give the coordinates of a single pixel. Specifying coordinates like this is called **indexing**: think of the index of a book, which tells you *on which page* an idea is discussed.
In Julia we use (square) brackets, `[` and `]` for indexing:
"""
# ╔═╡ bd22d09a-64c7-11eb-146f-67733b8be241
a_pixel = philip[200, 100]
# ╔═╡ 28860d48-64c8-11eb-240f-e1232b3638df
md"""
We see that Julia knows to draw our pixel object for us a block of the relevant color.
When we index into an image like this, the first number indicates the *row* in the image, starting from the top, and the second the *column*, starting from the left. In Julia, the first row and column are numbered starting from 1, not from 0 as in some other programming languages.
"""
# ╔═╡ 4ef99715-4d8d-4f9d-bf0b-8df9907a14cf
# ╔═╡ a510fc33-406e-4fb5-be83-9e4b5578717c
md"""
We can also use variables as indices...
"""
# ╔═╡ 13844ebf-52c4-47e9-bda4-106a02fad9d7
md"""
...and these variables can be controlled by sliders!
"""
# ╔═╡ 08d61afb-c641-4aa9-b995-2552af89f3b8
@bind row_i Slider(1:size(philip)[1], show_value=true)
# ╔═╡ 6511a498-7ac9-445b-9c15-ec02d09783fe
@bind col_i Slider(1:size(philip)[2], show_value=true)
# ╔═╡ 94b77934-713e-11eb-18cf-c5dc5e7afc5b
row_i,col_i
# ╔═╡ ff762861-b186-4eb0-9582-0ce66ca10f60
philip[row_i, col_i]
# ╔═╡ c9ed950c-dcd9-4296-a431-ee0f36d5b557
md"""
### Locations in an image: Range indexing
We saw that we can use the **row number** and **column number** to index a _single pixel_ of our image. Next, we will use a **range of numbers** to index _multiple rows or columns_ at once, returning a subarray:
"""
# ╔═╡ f0796032-8105-4f6d-b5ee-3647b052f2f6
philip[550:650, 1:philip_width]
# ╔═╡ b9be8761-a9c9-49eb-ba1b-527d12097362
md"""
Here, we use `a:b` to mean "_all numbers between `a` and `b`_". For example:
"""
# ╔═╡ d515286b-4ad4-449b-8967-06b9b4c87684
collect(1:10)
# ╔═╡ eef8fbc8-8887-4628-8ba8-114575d6b91f
md"""
You can also use a `:` without start and end to mean "_every index_"
"""
# ╔═╡ 4e6a31d6-1ef8-4a69-b346-ad58cfc4d8a5
philip[550:650, :]
# ╔═╡ e11f0e47-02d9-48a6-9b1a-e313c18db129
md"""
Let's get a single row of pixels:
"""
# ╔═╡ 9e447eab-14b6-45d8-83ab-1f7f1f1c70d2
philip[550, :]
# ╔═╡ c926435c-c648-419c-9951-ac8a1d4f3b92
philip_head = philip[470:800, 140:410]
# ╔═╡ 32e7e51c-dd0d-483d-95cb-e6043f2b2975
md"""
#### Scroll in on Philip's nose!
Use the widgets below (slide left and right sides).
"""
# ╔═╡ 4b64e1f2-d0ca-4e22-a89d-1d9a16bd6788
@bind range_rows RangeSlider(1:size(philip_head)[1])
# ╔═╡ 85919db9-1444-4904-930f-ba572cff9460
@bind range_cols RangeSlider(1:size(philip_head)[2])
# ╔═╡ 2ac47b91-bbc3-49ae-9bf5-4def30ff46f4
nose = philip_head[range_rows, range_cols]
# ╔═╡ 5a0cc342-64c9-11eb-1211-f1b06d652497
md"""
# Process: Modifying an image
Now that we have access to image data, we can start to **process** that data to extract information and/or modify it in some way.
We might want to detect what type of objects are in the image, say to detect whether a patient has a certain disease. To achieve a high-level goal like this, we will need to perform mid-level operations, such as detecting edges that separate different objects based on their color. And, in turn, to carry that out we will need to do low-level operations like comparing colors of neighboring pixels and somehow deciding if they are "different".
"""
# ╔═╡ 4504577c-64c8-11eb-343b-3369b6d10d8b
md"""
## Representing colors
We can use indexing to *modify* a pixel's color. To do so, we need a way to specify a new color.
Color turns out to be a complicated concept, having to do with the interaction of the physical properties of light with the physiological mechanisms and mental processes by which we detect it!
We will ignore this complexity by using a standard method of representing colours in the computer as an **RGB triple**, i.e. a triple of three numbers $(r, g, b)$, giving the amount of red, of green and of blue in a colour, respectively. These are numbers between 0 (none) and 1 (full). The final colour that we perceive is the result of "adding" the corresponding amount of light of each colour; the details are fascinating, but beyond the scope of this course!
"""
# ╔═╡ 40886d36-64c9-11eb-3c69-4b68673a6dde
md"""
We can create a new color in Julia as follows:
"""
# ╔═╡ 552235ec-64c9-11eb-1f7f-f76da2818cb3
RGB(1.0, 0.0, 0.0)
# ╔═╡ c2907d1a-47b1-4634-8669-a68022706861
begin
md"""
A pixel with $(@bind test_r Scrubbable(0:0.1:1; default=0.1)) red, $(@bind test_g Scrubbable(0:0.1:1; default=0.5)) green and $(@bind test_b Scrubbable(0:0.1:1; default=1.0)) blue looks like:
"""
end
# ╔═╡ ff9eea3f-cab0-4030-8337-f519b94316c5
RGB(test_r, test_g, test_b)
# ╔═╡ f6cc03a0-ee07-11ea-17d8-013991514d42
md"""
#### Exercise 2.5
👉 Write a function `invert` that inverts a color, i.e. sends $(r, g, b)$ to $(1 - r, 1-g, 1-b)$.
"""
# ╔═╡ 63e8d636-ee0b-11ea-173d-bd3327347d55
function invert(color::AbstractRGB)
return missing
end
# ╔═╡ 2cc2f84e-ee0d-11ea-373b-e7ad3204bb00
md"Let's invert some colors:"
# ╔═╡ b8f26960-ee0a-11ea-05b9-3f4bc1099050
color_black = RGB(0.0, 0.0, 0.0)
# ╔═╡ 5de3a22e-ee0b-11ea-230f-35df4ca3c96d
invert(color_black)
# ╔═╡ 4e21e0c4-ee0b-11ea-3d65-b311ae3f98e9
color_red = RGB(0.8, 0.1, 0.1)
# ╔═╡ 6dbf67ce-ee0b-11ea-3b71-abc05a64dc43
invert(color_red)
# ╔═╡ 846b1330-ee0b-11ea-3579-7d90fafd7290
md"Can you invert the picture of Philip?"
# ╔═╡ 943103e2-ee0b-11ea-33aa-75a8a1529931
philip_inverted = missing
# ╔═╡ 2ee543b2-64d6-11eb-3c39-c5660141787e
md"""
## Modifying a pixel
Let's start by seeing how to modify an image, e.g. in order to hide sensitive information.
We do this by assigning a new value to the color of a pixel:
"""
# ╔═╡ 53bad296-4c7b-471f-b481-0e9423a9288a
let
temp = copy(philip_head)
temp[100, 200] = RGB(1.0, 0.0, 0.0)
temp
end
# ╔═╡ ab9af0f6-64c9-11eb-13d3-5dbdb75a69a7
md"""
## Groups of pixels
We probably want to examine and modify several pixels at once.
For example, we can extract a horizontal strip 1 pixel tall:
"""
# ╔═╡ e29b7954-64cb-11eb-2768-47de07766055
philip_head[50, 50:100]
# ╔═╡ 8e7c4866-64cc-11eb-0457-85be566a8966
md"""
Here, Julia is showing the strip as a collection of rectangles in a row.
"""
# ╔═╡ f2ad501a-64cb-11eb-1707-3365d05b300a
md"""
And then modify it:
"""
# ╔═╡ 4f03f651-56ed-4361-b954-e6848ac56089
let
temp = copy(philip_head)
temp[50, 50:100] .= RGB(1.0, 0.0, 0.0)
temp
end
# ╔═╡ 2808339c-64cc-11eb-21d1-c76a9854aa5b
md"""
Similarly we can modify a whole rectangular block of pixels:
"""
# ╔═╡ 1bd53326-d705-4d1a-bf8f-5d7f2a4e696f
let
temp = copy(philip_head)
temp[50:100, 50:100] .= RGB(1.0, 0.0, 0.0)
temp
end
# ╔═╡ a5f8bafe-edf0-11ea-0da3-3330861ae43a
md"""
#### Exercise 1.2
👉 Generate a vector of 100 zeros. Change the center 20 elements to 1.
"""
# ╔═╡ b6b65b94-edf0-11ea-3686-fbff0ff53d08
function create_bar()
return missing
end
# ╔═╡ e3394c8a-edf0-11ea-1bb8-619f7abb6881
if !@isdefined(create_bar)
not_defined(:create_bar)
else
let
result = create_bar()
if ismissing(result)
still_missing()
elseif isnothing(result)
keep_working(md"Did you forget to write `return`?")
elseif !(result isa Vector) || length(result) != 100
keep_working(md"The result should be a `Vector` with 100 elements.")
elseif result[[1,50,100]] != [0,1,0]
keep_working()
else
correct()
end
end
end
# ╔═╡ 693af19c-64cc-11eb-31f3-57ab2fbae597
md"""
## Reducing the size of an image
"""
# ╔═╡ 6361d102-64cc-11eb-31b7-fb631b632040
md"""
Maybe we would also like to reduce the size of this image, since it's rather large. For example, we could take every 10th row and every 10th column and make a new image from the result:
"""
# ╔═╡ ae542fe4-64cc-11eb-29fc-73b7a66314a9
reduced_image = philip[1:10:end, 1:10:end]
# ╔═╡ c29292b8-64cc-11eb-28db-b52c46e865e6
md"""
Note that the resulting image doesn't look very good, since we seem to have lost too much detail.
#### Exercise
> Think about what we might do to reduce the size of an image without losing so much detail.
"""
# ╔═╡ 7b04331a-6bcb-11eb-34fa-1f5b151e5510
md"""
# Model: Creating synthetic images
Think about your favorite Pixar movie (e.g. Monsters Inc.) Movie frames are images that are generated from complicated mathematical models. Ray tracing (which may be covered in this class)
is a method for making images feel realistic.
"""
# ╔═╡ 5319c03c-64cc-11eb-0743-a1612476e2d3
md"""
# Output: Saving an image to a file
Finally, we want to be able to save our new creation to a file. To do so, you can **right click** on a displayed image, or you can write it to a file. Fill in a path below:
"""
# ╔═╡ 3db09d92-64cc-11eb-0333-45193c0fd1fe
save("reduced_phil.png", reduced_image)
# ╔═╡ 61606acc-6bcc-11eb-2c80-69ceec9f9702
md"""
# $(html"<br>")
"""
# ╔═╡ dd183eca-6018-11eb-2a83-2fcaeea62942
md"""
# Computer science: Arrays
An image is a concrete example of a fundamental concept in computer science, namely an **array**.
Just as an image is a rectangular grid, where each grid cell contains a single color,
an array is a rectangular grid for storing data. Data is stored and retrieved using indexing, just as in the image examples: each cell in the grid can store a single "piece of data" of a given type.
## Dimension of an array
An array can be one-dimensional, like the strip of pixels above, two-dimensional, three-dimensional, and so on. The dimension tells us the number of indices that we need to specify a unique location in the grid.
The array object also needs to know the length of the data in each dimension.
## Names for different types of array
One-dimensional arrays are often called **vectors** (or, in some other languages, "lists") and two-dimensional arrays are **matrices**. Higher-dimensional arrays are **tensors**.
## Arrays as data structures
An array is an example of a **data structure**, i.e. a way of arranging data such that we can access it. A key theme in computer science is that of designing different data structures that represent data in different ways.
Conceptually, we can think of an array as a block of data that has a position or location in space. This can be a useful way to arrange data if, for example, we want to represent the fact that values in nearby locations in array are somehow near to one another.
Images are a good example of this: neighbouring pixels often represent different pieces of the same object, for example the rug or floor, or Philip himself, in the photo. We thus expect neighbouring pixels to be of a similar color. On the other hand, if they are not, this is also useful information, since that may correspond to the edge of an object.
"""
# ╔═╡ 8ddcb286-602a-11eb-3ae0-07d3c77a0f8c
md"""
# Julia: constructing arrays
## Creating vectors and matrices
Julia has strong support for arrays of any dimension.
Vectors, or one-dimensional arrays, are written using square brackets and commas:
"""
# ╔═╡ f4b0aa23-2d76-4d88-b2a4-3807e88d27ce
[1, 20, "hello"]
# ╔═╡ 1b2b2b18-64d4-11eb-2d43-e31cb8bc25d1
[RGB(1, 0, 0), RGB(0, 1, 0), RGB(0, 0, 1)]
# ╔═╡ 2b0e6450-64d4-11eb-182b-ff1bd515b56f
md"""
Matrices, or two-dimensional arrays, also use square brackets, but with spaces and new lines instead of commas:
"""
# ╔═╡ 3b2b041a-64d4-11eb-31dd-47d7321ee909
[RGB(1, 0, 0) RGB(0, 1, 0)
RGB(0, 0, 1) RGB(0.5, 0.5, 0.5)]
# ╔═╡ 0f35603a-64d4-11eb-3baf-4fef06d82daa
md"""
## Array comprehensions
It's clear that if we want to create an array with more than a few elements, it will be *very* tedious to do so by hand like this.
Rather, we want to *automate* the process of creating an array by following some pattern, for example to create a whole palette of colors!
Let's start with all the possible colors interpolating between black, `RGB(0, 0, 0)`, and red, `RGB(1, 0, 0)`. Since only one of the values is changing, we can represent this as a vector, i.e. a one-dimensional array.
A neat method to do this is an **array comprehension**. Again we use square brackets to create an array, but now we use a **variable** that varies over a given **range** values:
"""
# ╔═╡ e69b02c6-64d6-11eb-02f1-21c4fb5d1043
[RGB(x, 0, 0) for x in 0:0.1:1]
# ╔═╡ fce76132-64d6-11eb-259d-b130038bbae6
md"""
Here, `0:0.1:1` is a **range**; the first and last numbers are the start and end values, and the middle number is the size of the step.
"""
# ╔═╡ 17a69736-64d7-11eb-2c6c-eb5ebf51b285
md"""
In a similar way we can create two-dimensional matrices, by separating the two variables for each dimension with a comma (`,`):
"""
# ╔═╡ 291b04de-64d7-11eb-1ee0-d998dccb998c
[RGB(i, j, 0) for i in 0:0.1:1, j in 0:0.1:1]
# ╔═╡ 647fddf2-60ee-11eb-124d-5356c7014c3b
md"""
## Joining matrices
We often want to join vectors and matrices together. We can do so using an extension of the array creation syntax:
"""
# ╔═╡ 7d9ad134-60ee-11eb-1b2a-a7d63f3a7a2d
[philip_head philip_head]
# ╔═╡ 8433b862-60ee-11eb-0cfc-add2b72997dc
[philip_head reverse(philip_head, dims=2)
reverse(philip_head, dims=1) rot180(philip_head)]
# ╔═╡ 5e52d12e-64d7-11eb-0905-c9038a404e24
md"""
# Pluto: Interactivity using sliders
"""
# ╔═╡ 6aba7e62-64d7-11eb-2c49-7944e9e2b94b
md"""
Suppose we want to see the effect of changing the number of colors in our vector or matrix. We could, of course, do so by manually fiddling with the range.
It would be nice if we could do so using a **user interface**, for example with a **slider**. Fortunately, the Pluto notebook allows us to do so!
"""
# ╔═╡ afc66dac-64d7-11eb-1ad0-7f62c20ffefb
md"""
We can define a slider using
"""
# ╔═╡ b37c9868-64d7-11eb-3033-a7b5d3065f7f
@bind number_reds Slider(1:100, show_value=true)
# ╔═╡ b1dfe122-64dc-11eb-1104-1b8852b2c4c5
md"""
[The `Slider` type is defined in the `PlutoUI.jl` package.]
"""
# ╔═╡ cfc55140-64d7-11eb-0ff6-e59c70d01d67
md"""
This creates a new variable called `number_reds`, whose value is the value shown by the slider. When we move the slider, the value of the variable gets updated. Since Pluto is a **reactive** notebook, other cells which use the value of this variable will *automatically be updated too*!
"""
# ╔═╡ fca72490-64d7-11eb-1464-f5e0582c4d18
md"""
Let's use this to make a slider for our one-dimensional collection of reds:
"""
# ╔═╡ 88933746-6028-11eb-32de-13eb6ff43e29
[RGB(red_value / number_reds, 0, 0) for red_value in 0:number_reds]
# ╔═╡ 1c539b02-64d8-11eb-3505-c9288357d139
md"""
When you move the slider, you should see the number of red color patches change!
"""
# ╔═╡ 10f6e6da-64d8-11eb-366f-11f16e73043b
md"""
What is going on here is that we are creating a vector in which `red_value` takes each value in turn from the range from `0` up to the current value of `number_reds`. If we change `number_reds`, then we create a new vector with that new number of red patches.
"""
# ╔═╡ 82a8314c-64d8-11eb-1acb-e33625381178
md"""
#### Exercise
> Make three sliders with variables `r`, `g` and `b`. Then make a single color patch with the RGB color given by those values.
"""
# ╔═╡ 576d5e3a-64d8-11eb-10c9-876be31f7830
md"""
We can do the same to create different size matrices, by creating two sliders, one for reds and one for greens. Try it out!
"""
# ╔═╡ ace86c8a-60ee-11eb-34ef-93c54abc7b1a
md"""
# Summary
"""
# ╔═╡ b08e57e4-60ee-11eb-0e1a-2f49c496668b
md"""
Let's summarize the main ideas from this notebook:
- Images are **arrays** of colors
- We can inspect and modify arrays using **indexing**
- We can create arrays directly or using **array comprehensions**
"""
# ╔═╡ 5da8cbe8-eded-11ea-2e43-c5b7cc71e133
begin
colored_line(x::Vector{<:Real}) = Gray.(Float64.((hcat(x)')))
colored_line(x::Any) = nothing
end
# ╔═╡ d862fb16-edf1-11ea-36ec-615d521e6bc0
colored_line(create_bar())
# ╔═╡ e0a6031c-601b-11eb-27a5-65140dd92897
bigbreak = html"<br><br><br><br><br>";
# ╔═╡ 45815734-ee0a-11ea-2982-595e1fc0e7b1
bigbreak
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
ColorVectorSpace = "c3611d14-8923-5661-9e6a-0046d554d3a4"
Colors = "5ae59095-9a9b-59fe-a467-6f913c188581"
FileIO = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"
HypertextLiteral = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
ImageIO = "82e4d734-157c-48bb-816b-45c225c6df19"
ImageShow = "4e3cecfd-b093-5904-9786-8bbb286a6a31"
PlutoTeachingTools = "661c6b06-c737-4d37-b85c-46df65de6f69"
PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
[compat]
ColorVectorSpace = "~0.10.0"
Colors = "~0.12.11"
FileIO = "~1.16.3"
HypertextLiteral = "~0.9.5"
ImageIO = "~0.6.8"
ImageShow = "~0.3.8"
PlutoTeachingTools = "~0.2.15"
PlutoUI = "~0.7.59"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
[[AbstractPlutoDingetjes]]
deps = ["Pkg"]
git-tree-sha1 = "6e1d2a35f2f90a4bc7c2ed98079b2ba09c35b83a"
uuid = "6e696c72-6542-2067-7265-42206c756150"
version = "1.3.2"
[[ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.1"
[[Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[AxisArrays]]
deps = ["Dates", "IntervalSets", "IterTools", "RangeArrays"]
git-tree-sha1 = "16351be62963a67ac4083f748fdb3cca58bfd52f"
uuid = "39de3d68-74b9-583c-8d2d-e117c070f3a9"
version = "0.4.7"
[[Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[CEnum]]
git-tree-sha1 = "389ad5c84de1ae7cf0e28e381131c98ea87d54fc"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.5.0"
[[CodeTracking]]
deps = ["InteractiveUtils", "UUIDs"]
git-tree-sha1 = "c0216e792f518b39b22212127d4a84dc31e4e386"
uuid = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
version = "1.3.5"
[[ColorSchemes]]
deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "PrecompileTools", "Random"]
git-tree-sha1 = "b5278586822443594ff615963b0c09755771b3e0"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.26.0"
[[ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.5"
[[ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "Requires", "Statistics", "TensorCore"]
git-tree-sha1 = "a1f44953f2382ebb937d60dafbe2deea4bd23249"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.10.0"
[ColorVectorSpace.extensions]
SpecialFunctionsExt = "SpecialFunctions"
[ColorVectorSpace.weakdeps]
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
[[Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "362a287c3aa50601b0bc359053d5c2468f0e7ce0"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.11"
[[Compat]]
deps = ["TOML", "UUIDs"]
git-tree-sha1 = "b1c55339b7c6c350ee89f2c1604299660525b248"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "4.15.0"
weakdeps = ["Dates", "LinearAlgebra"]
[Compat.extensions]
CompatLinearAlgebraExt = "LinearAlgebra"
[[CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "1.1.1+0"
[[DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "1d0a14036acb104d9e89698bd408f63ab58cdc82"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.20"
[[Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.9.3"
[[Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[FileIO]]
deps = ["Pkg", "Requires", "UUIDs"]
git-tree-sha1 = "82d8afa92ecf4b52d78d869f038ebfb881267322"
uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"
version = "1.16.3"
[[FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "05882d6995ae5c12bb5f36dd2ed3f61c98cbb172"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.5"
[[Format]]
git-tree-sha1 = "9c68794ef81b08086aeb32eeaf33531668d5f5fc"
uuid = "1fa38f19-a742-5d3f-a2b9-30dd87b9d5f8"
version = "1.3.7"
[[Hyperscript]]
deps = ["Test"]
git-tree-sha1 = "179267cfa5e712760cd43dcae385d7ea90cc25a4"
uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91"
version = "0.0.5"
[[HypertextLiteral]]
deps = ["Tricks"]
git-tree-sha1 = "7134810b1afce04bbc1045ca1985fbe81ce17653"
uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
version = "0.9.5"
[[IOCapture]]
deps = ["Logging", "Random"]
git-tree-sha1 = "b6d6bfdd7ce25b0f9b2f6b3dd56b2673a66c8770"
uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89"
version = "0.2.5"
[[ImageAxes]]
deps = ["AxisArrays", "ImageBase", "ImageCore", "Reexport", "SimpleTraits"]
git-tree-sha1 = "2e4520d67b0cef90865b3ef727594d2a58e0e1f8"
uuid = "2803e5a7-5153-5ecf-9a86-9b4c37f5f5ac"
version = "0.6.11"
[[ImageBase]]
deps = ["ImageCore", "Reexport"]
git-tree-sha1 = "eb49b82c172811fd2c86759fa0553a2221feb909"
uuid = "c817782e-172a-44cc-b673-b171935fbb9e"
version = "0.1.7"
[[ImageCore]]
deps = ["ColorVectorSpace", "Colors", "FixedPointNumbers", "MappedArrays", "MosaicViews", "OffsetArrays", "PaddedViews", "PrecompileTools", "Reexport"]
git-tree-sha1 = "b2a7eaa169c13f5bcae8131a83bc30eff8f71be0"
uuid = "a09fc81d-aa75-5fe9-8630-4744c3626534"
version = "0.10.2"
[[ImageIO]]
deps = ["FileIO", "IndirectArrays", "JpegTurbo", "LazyModules", "Netpbm", "OpenEXR", "PNGFiles", "QOI", "Sixel", "TiffImages", "UUIDs"]
git-tree-sha1 = "437abb322a41d527c197fa800455f79d414f0a3c"
uuid = "82e4d734-157c-48bb-816b-45c225c6df19"
version = "0.6.8"
[[ImageMetadata]]
deps = ["AxisArrays", "ImageAxes", "ImageBase", "ImageCore"]
git-tree-sha1 = "355e2b974f2e3212a75dfb60519de21361ad3cb7"
uuid = "bc367c6b-8a6b-528e-b4bd-a4b897500b49"
version = "0.9.9"
[[ImageShow]]
deps = ["Base64", "ColorSchemes", "FileIO", "ImageBase", "ImageCore", "OffsetArrays", "StackViews"]
git-tree-sha1 = "3b5344bcdbdc11ad58f3b1956709b5b9345355de"
uuid = "4e3cecfd-b093-5904-9786-8bbb286a6a31"
version = "0.3.8"
[[Imath_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "0936ba688c6d201805a83da835b55c61a180db52"
uuid = "905a6f67-0a94-5f89-b386-d35d92009cd1"
version = "3.1.11+0"
[[IndirectArrays]]
git-tree-sha1 = "012e604e1c7458645cb8b436f8fba789a51b257f"
uuid = "9b13fd28-a010-5f03-acff-a1bbcff69959"
version = "1.0.0"
[[Inflate]]
git-tree-sha1 = "d1b1b796e47d94588b3757fe84fbf65a5ec4a80d"
uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9"
version = "0.1.5"
[[InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[IntervalSets]]
git-tree-sha1 = "dba9ddf07f77f60450fe5d2e2beb9854d9a49bd0"
uuid = "8197267c-284f-5f27-9208-e0e47529a953"
version = "0.7.10"
[IntervalSets.extensions]
IntervalSetsRandomExt = "Random"
IntervalSetsRecipesBaseExt = "RecipesBase"
IntervalSetsStatisticsExt = "Statistics"
[IntervalSets.weakdeps]
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[IterTools]]
git-tree-sha1 = "42d5f897009e7ff2cf88db414a389e5ed1bdd023"
uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e"
version = "1.10.0"