From 38d1e0c1c0adcf1f6ae2fd45ecd2c51473900594 Mon Sep 17 00:00:00 2001 From: "Olivia T. Zahn" <42389485+oliviatessa@users.noreply.github.com> Date: Mon, 19 Dec 2022 15:35:39 -0700 Subject: [PATCH] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index ac16501..394aa1d 100644 --- a/README.md +++ b/README.md @@ -11,7 +11,7 @@ This project builds off of previous work published in [[1]](#1) and uses pruned Complex networks across many domains (ecological food webs, neural systems, electrical circuits) are made up of statistically significant, subgraphs called network motifs. Network motifs are described by the number of nodes they involve and the nature of the connections in-between the nodes (e.g., directed, or bi-directed). The order of the motif is defined by the number of nodes it involves (i.e. n-order motif involves n+1 nodes). For example, a second-order diverging motif involves 3 nodes:
- +
A subgraph must be statistically significant over a randomly connected graph to be considered a network motif of a given network. One metric for determining a subgraph’s statistical significance is its z-score when compared to randomly connected graphs.