-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathPreProcessing.m
150 lines (144 loc) · 5.05 KB
/
PreProcessing.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
%% Accelerometer Data Preperation for Classification:
clear all; close all;
init = load('PUC_withUser');
data = init.data;
target = init.target;
rng('default');
%%now 'data' contains all of the accelerometer data from the HAR data set:
% by column: 1) User ID 2)X1 3)Y1 4) Z1) 5)X2 6)Y2 7)Z2 8)X3 9)Y3 10)Z3
% 11)X4 12)Y4 13)Z4
%and 'target ' containts all of the class data (0-4).
% Class: 0) Sitting 1) Sitting Down 2) Standing 3) Standing Up 4) Walking
%%
%From each exercise of each person, calculate the variance of pitch and
% roll
idx = {};
wholedata = [data, target];
class_colors = {'r','b','g','cyan','yellow'};
class_names = {'Sitting','Sitting Down','Standing','Standing Up','Walking'};
i = 1;
figure();
for k=0:4
figure(k+1);
t = sprintf('Scatter Plot of 3-Axis Accelerometer Readings: %s',class_names{k+1});
title(t);
hold on;
for user = 0:3
[data_idx,I] = find(wholedata(:,1) == user & wholedata(:,14) == k);
idx{k+1,user+1} = data_idx;
i = i + 1;
for j = 1:4
scatter3(data(idx{k+1,user+1},3*(j)-1),data(idx{k+1,user+1},3*(j)),data(idx{k+1,user+1},3*j +1),class_colors{j});
end
end
legend('Sensor 1','Sensor 2', 'Sensor 3','Sensor 4');
xlabel('X');ylabel('Y');zlabel('Z');
view(40,35);
end
%Now idx contains all of the indexes of the users and exercise labels.
%columns are for each user, rows are for each exercise.
window_size = 50;
data = data(:,2:13);
data_preproc = zeros(size(data));
accel=[];
%% Calculate pitch, roll for each filtered accelerometer reading:
for i = 1:size(data,1)
for j = 1:4
accel = data(i,((3*j-2):3*j));
pitch = atan(accel(2)/sqrt((accel(1)^2)+(accel(3)^2)));
roll = atan(-accel(1)/accel(3));
accel_module = norm(accel);
data_preproc(i,(j*3-2):(j*3)) = [pitch,roll,accel_module];
end
end
%% Normalize the columns of the data:
for i = 1:size(data,2)
data_preproc(:,i) = mat2gray(data_preproc(:,i));
end
% now data preproc contains the normalized pitch, roll, and magnitude of each
% accelerometer, by column: 1)pitch1 2) roll1 3)magnitude1, and so on for
% all four sensors.
%%
%Now split the data up by which exercise and user it was:
data_windowed_nm = zeros(size(data_preproc,1),(size(data_preproc,2) + 24));
data_windowed_nm(:,1:9) = [data_preproc(:,1:3),zeros(size(data_preproc,1),6)];
data_windowed_nm(:,10:18) = [data_preproc(:,4:6),zeros(size(data_preproc,1),6)];
data_windowed_nm(:,19:27) = [data_preproc(:,7:9),zeros(size(data_preproc,1),6)];
data_windowed_nm(:,28:36) = [data_preproc(:,10:12),zeros(size(data_preproc,1),6)];
%prepare an averaging filter of size filter_size:
filter_size = floor(window_size/((window_size)^(1/3)));
f = fspecial('average',[1 filter_size])'; %create an averaging filter
for m = 1:5
for n = 1:4
for i = min(idx{m,n}):max(idx{m,n})
k = max(i - window_size,min(idx{m,n}));
temp = data_preproc(k:i,:);
smoothed = imfilter(data_preproc(k:i,:),f);
%Calculate the fourier transforms of the window, take the
%fundamental:
f_fundamental = fft(smoothed,[],1);
f_fundamental = f_fundamental(1,:);
%window_mean = mean(smoothed,1);
window_var = var(smoothed,1);
if numel(window_var) > 1
for j = 1:4
data_windowed_nm(i,(9*j-5):9*j) = [window_var(3*j-2), window_var(3*j-1), window_var(3*j), f_fundamental((j*3-2):j*3)];
end
else
if (i-1) > 0
for j = 1:4
data_windowed_nm(i,(9*j-5):9*j) = data_windowed_nm(i-1,(9*j-5):9*j);
end
else
for j = 1:4
data_windowed_nm(i,(9*j-5):9*j) = zeros(1,6);
end
end
end
end
end
end
%%
%Create scatter plots of the data:
close all;
b = {'arm','abdomen','thigh','ankle'};
features = {'\theta','\Phi','\alpha','\sigma^2_\theta','\sigma^2_\Phi','\sigma^2_\alpha','F_\theta','F_\Phi','F_\alpha'};
hold on;
for k = 1:4
figure();
for j = 1:9
subplot(3,3,j);
t = sprintf('Feature: %s Sensor: %d',features{j},k);
title(t);
hold on;
for i = 1:5
temp = data_windowed_nm(idx{i,k},9*(k-1)+j);
h = hist(temp,50)/length(temp);
h = plot(h,class_colors{i},'LineWidth',4);
end
axis tight;
legend('Sitting','Sitting Down','Standing','Standing Up','Walking');
end
end
%% Shuffle the data:
idx = randperm(size(data_windowed_nm,1));
data_windowed_nm = data_windowed_nm(idx,:);
target = target(idx,:);
target_bin = zeros(size(target,1),5);
for i = 1:size(data,1)
if (data(i) == 0)
target_bin(i,:) = [1 0 0 0 0];
end
if (target(i) == 1)
target_bin(i,:) = [0 1 0 0 0];
end
if (target(i) == 2)
target_bin(i,:) = [0 0 1 0 0];
end
if (target(i) == 3)
target_bin(i,:) = [0 0 0 1 0];
end
if (target(i) == 4)
target_bin(i,:) = [0 0 0 0 1];
end
end