-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfractal_2.frag
328 lines (277 loc) · 8.87 KB
/
fractal_2.frag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// The MIT License
// Copyright © 2013 Inigo Quilez
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// A list of useful distance function to simple primitives, and an example on how to
// do some interesting boolean operations, repetition and displacement.
//
// More info here: http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
#define AA 1 // make this 1 is your machine is too slow
uniform float u_time;
//------------------------------------------------------------------
float sdBox( vec3 p, vec3 b )
{
vec3 d = abs(p) - b;
return min(max(d.x,max(d.y,d.z)),0.0) + length(max(d,0.0));
}
float sdSphere( vec3 p, float s )
{
return length(p)-s;
}
float sdHexPrism( vec3 p, vec2 h )
{
vec3 q = abs(p);
#if 0
return max(q.z-h.y,max((q.x*0.866025+q.y*0.5),q.y)-h.x);
#else
float d1 = q.z-h.y;
float d2 = max((q.x*0.866025+q.y*0.5),q.y)-h.x;
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
#endif
}
float length2( vec2 p )
{
return sqrt( p.x*p.x + p.y*p.y );
}
float length6( vec2 p )
{
p = p*p*p; p = p*p;
return pow( p.x + p.y, 1.0/6.0 );
}
float length8( vec2 p )
{
p = p*p; p = p*p; p = p*p;
return pow( p.x + p.y, 1.0/8.0 );
}
float sdTorus82( vec3 p, vec2 t )
{
vec2 q = vec2(length2(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdTorus88( vec3 p, vec2 t )
{
vec2 q = vec2(length8(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdCylinder6( vec3 p, vec2 h )
{
return max( length6(p.xz)-h.x, abs(p.y)-h.y );
}
float sdCross( in vec3 p )
{
const float inf = 1.0 / .0;
float da = sdBox(p.xyz,vec3(inf,1.0,1.0));
float db = sdBox(p.yzx,vec3(1.0,inf,1.0));
// float db = sdSphere(p.yzx, 3.0);
float dc = sdBox(p.zxy,vec3(1.0,1.0,inf));
return min(da,min(db,dc));
}
//------------------------------------------------------------------
float opS( float d1, float d2 )
{
return max(-d2,d1);
}
vec2 opU( vec2 d1, vec2 d2 )
{
return (d1.x<d2.x) ? d1 : d2;
}
vec3 opRep( vec3 p, vec3 c )
{
return mod(p,c)-0.5*c;
}
vec3 opTwist( vec3 p )
{
float c = cos(10.0*p.y+2.0);
float s = sin(10.0*p.z+10.0);
mat2 m = mat2(c,-s,s,c);
return vec3(m*p.xz,p.y);
}
//------------------------------------------------------------------
vec3 map( in vec3 p )
{
// vec3 t = opTwist(p);
vec3 e = opRep(p, vec3(6.0));
float d = sdHexPrism(e, vec2(2.0));
float s = 1.0;
// int num = 1 + int(floor(5.0 * sin(u_time / 3.0)));
int num = 4;
for( int m=0; m<num; m++ )
{
vec3 a = mod( p*s, 3.0 )-1.0;
s *= 3.0 + 0.3 * sin(u_time / 5.0);
// s *= 3.0;
vec3 r = 1.0 - 3.0*abs(a);
float c = sdCross(r)/s;
float x = opS(d, -c);
d = x;
}
return vec3(d,1.0,0.0);
}
vec3 intersect( in vec3 ro, in vec3 rd )
{
for(float t=0.0; t<10.0; )
{
vec3 h = map(ro + rd*t);
if( h.x<0.001 )
return vec3(t,h.yz);
t += h.x;
}
return vec3(-1.0);
}
vec2 castRay( in vec3 ro, in vec3 rd )
{
float tmin = 1.0;
float tmax = 20.0;
#if 0
// bounding volume
float tp1 = (0.0-ro.y)/rd.y; if( tp1>0.0 ) tmax = min( tmax, tp1 );
float tp2 = (1.6-ro.y)/rd.y; if( tp2>0.0 ) { if( ro.y>1.6 ) tmin = max( tmin, tp2 );
else tmax = min( tmax, tp2 ); }
#endif
float t = tmin;
float m = -1.0;
for( int i=0; i<64; i++ )
{
float precis = 0.0004*t;
vec3 res = map( ro+rd*t );
if( res.x<precis || t>tmax ) break;
t += res.x;
m = res.y;
}
if( t>tmax ) m=-3.0;
return vec2( t, m );
}
float calcSoftshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax )
{
float res = 1.0;
float t = mint;
for( int i=0; i<16; i++ )
{
float h = map( ro + rd*t ).x;
res = min( res, 8.0*h/t );
t += clamp( h, 0.02, 0.10 );
if( res<0.005 || t>tmax ) break;
}
return clamp( res, 0.0, 1.0 );
}
vec3 calcNormal( in vec3 pos )
{
vec2 e = vec2(1.0,-1.0)*0.5773*0.0005;
return normalize( e.xyy*map( pos + e.xyy ).x +
e.yyx*map( pos + e.yyx ).x +
e.yxy*map( pos + e.yxy ).x +
e.xxx*map( pos + e.xxx ).x );
/*
vec3 eps = vec3( 0.0005, 0.0, 0.0 );
vec3 nor = vec3(
map(pos+eps.xyy).x - map(pos-eps.xyy).x,
map(pos+eps.yxy).x - map(pos-eps.yxy).x,
map(pos+eps.yyx).x - map(pos-eps.yyx).x );
return normalize(nor);
*/
}
float calcAO( in vec3 pos, in vec3 nor )
{
float occ = 0.0;
float sca = 1.0;
for( int i=0; i<5; i++ )
{
float hr = 0.01 + 0.12*float(i)/4.0;
vec3 aopos = nor * hr + pos;
float dd = map( aopos ).x;
occ += -(dd-hr)*sca;
sca *= 0.95;
}
return clamp( 1.0 - 3.0*occ, 0.0, 1.0 );
}
// http://iquilezles.org/www/articles/checkerfiltering/checkerfiltering.htm
float checkersGradBox( in vec2 p )
{
// filter kernel
vec2 w = fwidth(p) + 0.001;
// analytical integral (box filter)
vec2 i = 2.0*(abs(fract((p-0.5*w)*0.5)-0.5)-abs(fract((p+0.5*w)*0.5)-0.5))/w;
// xor pattern
return 0.5 - 0.5*i.x*i.y;
}
vec3 render( in vec3 ro, in vec3 rd )
{
// vec3 col = vec3(0.2, 0.2, .2) +rd.y*0.8;
vec3 col = vec3(0.0,0.0,0.0);
vec2 res = castRay(ro,rd);
float t = res.x;
float m = res.y;
if( m>-0.5 )
{
vec3 pos = ro + t*rd;
vec3 nor = calcNormal( pos );
vec3 ref = reflect( rd, nor );
// material
col = 0.45 + 0.35*sin( vec3(0.9,0.3,0.10)*(m-1.0) );
// lighitng
float occ = calcAO( pos, nor );
vec3 lig = normalize( vec3(-0.4, 0.7, -0.6) );
vec3 hal = normalize( lig-rd );
float amb = clamp( 0.5+0.5*nor.y, 0.0, 1.0 );
float dif = clamp( dot( nor, lig ), 0.0, 1.0 );
float bac = clamp( dot( nor, normalize(vec3(-lig.x,0.0,-lig.z))), 0.0, 1.0 )*clamp( 1.0-pos.y,0.0,1.0);
float dom = smoothstep( -0.1, 0.1, ref.y );
float fre = pow( clamp(1.0+dot(nor,rd),0.0,1.0), 2.0 );
dif *= calcSoftshadow( pos, lig, 0.02, 2.5 );
dom *= calcSoftshadow( pos, ref, 0.02, 2.5 );
float spe = pow( clamp( dot( nor, hal ), 0.0, 1.0 ),16.0)*
dif *
(0.04 + 0.96*pow( clamp(1.0+dot(hal,rd),0.0,1.0), 5.0 ));
vec3 lin = vec3(0.0);
lin += 1.30*dif*vec3(1.00,0.80,0.55);
lin += 0.40*amb*vec3(0.40,0.60,1.00)*occ;
lin += 0.50*dom*vec3(0.40,0.60,1.00)*occ;
lin += 0.50*bac*vec3(0.25,0.25,0.25)*occ;
lin += 0.25*fre*vec3(1.00,1.00,1.00)*occ;
col = col*lin;
col += 10.00*spe*vec3(1.00,0.90,0.70);
col = mix( col, vec3(3.0,0.2,1.0), 0.9-exp( -0.0002*t*t*t ) );
}
return vec3( clamp(col,0.0,1.0) );
}
mat3 setCamera( in vec3 ro, in vec3 ta, float cr )
{
vec3 cw = normalize(ta-ro);
vec3 cp = vec3(sin(cr), cos(cr),0.0);
vec3 cu = normalize( cross(cw,cp) );
vec3 cv = normalize( cross(cu,cw) );
return mat3( cu, cv, cw );
}
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
vec2 mo = iMouse.xy/iResolution.xy;
// float time = 15.0 + u_time / 10.0;
float time = 15.0;
vec3 tot = vec3(0.0);
#if AA>1
for( int m=0; m<AA; m++ )
for( int n=0; n<AA; n++ )
{
// pixel coordinates
vec2 o = vec2(float(m),float(n)) / float(AA) - 0.5;
vec2 p = (-iResolution.xy + 2.0*(fragCoord+o))/iResolution.y;
#else
vec2 p = (-iResolution.xy + 2.0*fragCoord)/iResolution.y;
#endif
// camera
vec3 ro = vec3( -0.2+3.5*cos(0.1*time + 6.0*mo.x), 3.0 + 2.0*mo.y, 0.5 + 4.0*sin(0.1*time + 6.0*mo.x) );
vec3 ta = vec3( -0.8 * 2.0, -0.4 * 2.0, 0.10 * 2.0 );
// camera-to-world transformation
mat3 ca = setCamera( ro, ta, 0.0 );
// ray direction
vec3 rd = ca * normalize( vec3(p.xy,2.0) );
// render
vec3 col = render( ro, rd );
// gamma
col = pow( col, vec3(0.4545) );
tot += col;
#if AA>1
}
tot /= float(AA*AA);
#endif
fragColor = vec4( tot, 1.0 );
}