-
Notifications
You must be signed in to change notification settings - Fork 152
/
train.py
88 lines (75 loc) · 2.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
from torch.autograd import Variable
import time
import os
import sys
from utils import *
def train_epoch(epoch, data_loader, model, criterion, optimizer, opt,
epoch_logger, batch_logger):
print('train at epoch {}'.format(epoch))
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end_time = time.time()
for i, (inputs, targets) in enumerate(data_loader):
data_time.update(time.time() - end_time)
if not opt.no_cuda:
targets = targets.cuda()
inputs = Variable(inputs)
targets = Variable(targets)
outputs = model(inputs)
loss = criterion(outputs, targets)
losses.update(loss.data, inputs.size(0))
prec1, prec5 = calculate_accuracy(outputs.data, targets.data, topk=(1,5))
top1.update(prec1, inputs.size(0))
top5.update(prec5, inputs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end_time)
end_time = time.time()
batch_logger.log({
'epoch': epoch,
'batch': i + 1,
'iter': (epoch - 1) * len(data_loader) + (i + 1),
'loss': losses.val.item(),
'prec1': top1.val.item(),
'prec5': top5.val.item(),
'lr': optimizer.param_groups[0]['lr']
})
if i % 10 ==0:
print('Epoch: [{0}][{1}/{2}]\t lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.5f} ({top1.avg:.5f})\t'
'Prec@5 {top5.val:.5f} ({top5.avg:.5f})'.format(
epoch,
i,
len(data_loader),
batch_time=batch_time,
data_time=data_time,
loss=losses,
top1=top1,
top5=top5,
lr=optimizer.param_groups[0]['lr']))
epoch_logger.log({
'epoch': epoch,
'loss': losses.avg.item(),
'prec1': top1.avg.item(),
'prec5': top5.avg.item(),
'lr': optimizer.param_groups[0]['lr']
})
#if epoch % opt.checkpoint == 0:
# save_file_path = os.path.join(opt.result_path,
# 'save_{}.pth'.format(epoch))
# states = {
# 'epoch': epoch + 1,
# 'arch': opt.arch,
# 'state_dict': model.state_dict(),
# 'optimizer': optimizer.state_dict(),
# }
# torch.save(states, save_file_path)