From cc56caba255bcb62eb05a812ce1bc25724dfda90 Mon Sep 17 00:00:00 2001 From: PikaCat Date: Thu, 25 Apr 2024 16:13:47 +0800 Subject: [PATCH] Implement accumulator refresh table For each thread persist an accumulator cache for the network, where each cache contains multiple entries for each of the possible king squares. When the accumulator needs to be refreshed, the cached entry is used to more efficiently update the accumulator, instead of rebuilding it from scratch. This idea, was first described by Luecx (author of Koivisto) and is commonly referred to as "Finny Tables". When the accumulator needs to be refreshed, instead of filling it with biases and adding every piece from scratch, we... 1. Take the `AccumulatorRefreshEntry` associated with the new king bucket 2. Calculate the features to activate and deactivate (from differences between bitboards in the entry and bitboards of the actual position) 3. Apply the updates on the refresh entry 4. Copy the content of the refresh entry accumulator to the accumulator we were refreshing 5. Copy the bitboards from the position to the refresh entry, to match the newly updated accumulator No functional change --- src/evaluate.cpp | 18 ++- src/evaluate.h | 6 +- src/nnue/features/half_ka_v2_hm.cpp | 19 +--- src/nnue/features/half_ka_v2_hm.h | 21 +++- src/nnue/network.cpp | 18 +-- src/nnue/network.h | 12 +- src/nnue/nnue_accumulator.h | 62 +++++++++- src/nnue/nnue_feature_transformer.h | 171 +++++++++++++++++----------- src/nnue/nnue_misc.cpp | 23 ++-- src/nnue/nnue_misc.h | 9 +- src/search.cpp | 27 +++-- src/search.h | 7 +- src/uci.cpp | 8 +- 13 files changed, 266 insertions(+), 135 deletions(-) diff --git a/src/evaluate.cpp b/src/evaluate.cpp index 1363aa14..c579a648 100644 --- a/src/evaluate.cpp +++ b/src/evaluate.cpp @@ -25,12 +25,14 @@ #include #include #include +#include #include "nnue/network.h" #include "nnue/nnue_misc.h" #include "position.h" #include "types.h" #include "uci.h" +#include "nnue/nnue_accumulator.h" namespace Stockfish { @@ -46,7 +48,10 @@ int Eval::simple_eval(const Position& pos, Color c) { // Evaluate is the evaluator for the outer world. It returns a static evaluation // of the position from the point of view of the side to move. -Value Eval::evaluate(const Eval::NNUE::Network& network, const Position& pos, int optimism) { +Value Eval::evaluate(const Eval::NNUE::Network& network, + const Position& pos, + NNUE::AccumulatorCaches& caches, + int optimism) { assert(!pos.checkers()); @@ -56,7 +61,7 @@ Value Eval::evaluate(const Eval::NNUE::Network& network, const Position& pos, in int simpleEval = simple_eval(pos, stm); int nnueComplexity; - Value nnue = network.evaluate(pos, true, &nnueComplexity); + Value nnue = network.evaluate(pos, &caches.cache, true, &nnueComplexity); // Blend optimism and eval with nnue complexity and material imbalance optimism += optimism * (nnueComplexity + std::abs(simpleEval - nnue)) / 729; @@ -80,21 +85,24 @@ Value Eval::evaluate(const Eval::NNUE::Network& network, const Position& pos, in // Trace scores are from white's point of view std::string Eval::trace(Position& pos, const Eval::NNUE::Network& network) { + auto caches = std::make_unique(); + caches->clear(network); + if (pos.checkers()) return "Final evaluation: none (in check)"; std::stringstream ss; ss << std::showpoint << std::noshowpos << std::fixed << std::setprecision(2); - ss << '\n' << NNUE::trace(pos, network) << '\n'; + ss << '\n' << NNUE::trace(pos, network, *caches) << '\n'; ss << std::showpoint << std::showpos << std::fixed << std::setprecision(2) << std::setw(15); - Value v = network.evaluate(pos); + Value v = network.evaluate(pos, &caches->cache); v = pos.side_to_move() == WHITE ? v : -v; ss << "NNUE evaluation " << 0.01 * UCIEngine::to_cp(v, pos) << " (white side)\n"; - v = evaluate(network, pos, VALUE_ZERO); + v = evaluate(network, pos, *caches, VALUE_ZERO); v = pos.side_to_move() == WHITE ? v : -v; ss << "Final evaluation " << 0.01 * UCIEngine::to_cp(v, pos) << " (white side)"; ss << " [with scaled NNUE, ...]"; diff --git a/src/evaluate.h b/src/evaluate.h index 60fea5f6..25b94ca6 100644 --- a/src/evaluate.h +++ b/src/evaluate.h @@ -37,12 +37,16 @@ namespace Eval { namespace NNUE { class Network; +struct AccumulatorCaches; } std::string trace(Position& pos, const Eval::NNUE::Network& network); int simple_eval(const Position& pos, Color c); -Value evaluate(const NNUE::Network& network, const Position& pos, int optimism); +Value evaluate(const NNUE::Network& network, + const Position& pos, + Eval::NNUE::AccumulatorCaches& caches, + int optimism); } // namespace Eval diff --git a/src/nnue/features/half_ka_v2_hm.cpp b/src/nnue/features/half_ka_v2_hm.cpp index f01bc6ef..0a16df1b 100644 --- a/src/nnue/features/half_ka_v2_hm.cpp +++ b/src/nnue/features/half_ka_v2_hm.cpp @@ -23,7 +23,7 @@ #include "../../bitboard.h" #include "../../position.h" #include "../../types.h" -#include "../nnue_common.h" +#include "../nnue_accumulator.h" namespace Stockfish::Eval::NNUE::Features { @@ -36,22 +36,9 @@ inline IndexType HalfKAv2_hm::make_index(Square s, Piece pc, Square ksq, int ab) + PS_NB * ((KingBuckets[ksq] & 0x7) * 9 + ab)); } -// Get a list of indices for active features -template -void HalfKAv2_hm::append_active_indices(const Position& pos, IndexList& active) { - Square ksq = pos.square(Perspective); - int ab = pos.count(Perspective) * 3 + pos.count(Perspective); - Bitboard bb = pos.pieces(); - while (bb) - { - Square s = pop_lsb(bb); - active.push_back(make_index(s, pos.piece_on(s), ksq, ab)); - } -} - // Explicit template instantiations -template void HalfKAv2_hm::append_active_indices(const Position& pos, IndexList& active); -template void HalfKAv2_hm::append_active_indices(const Position& pos, IndexList& active); +template IndexType HalfKAv2_hm::make_index(Square s, Piece pc, Square ksq, int ab); +template IndexType HalfKAv2_hm::make_index(Square s, Piece pc, Square ksq, int ab); // Get a list of indices for recently changed features template diff --git a/src/nnue/features/half_ka_v2_hm.h b/src/nnue/features/half_ka_v2_hm.h index 23f4e505..5259ece3 100644 --- a/src/nnue/features/half_ka_v2_hm.h +++ b/src/nnue/features/half_ka_v2_hm.h @@ -64,10 +64,6 @@ class HalfKAv2_hm { }; // clang-format on - // Index of a feature for a given king position and another piece on some square - template - static IndexType make_index(Square s, Piece pc, Square ksq, int ab); - public: // Feature name static constexpr const char* Name = "HalfKAv2_hm"; @@ -95,6 +91,19 @@ class HalfKAv2_hm { }; #undef M + static constexpr uint8_t KingCacheMaps[SQUARE_NB] = { + 0, 0, 0, 0, 1, 2, 0, 0, 0, + 0, 0, 0, 5, 4, 3, 0, 0, 0, + 0, 0, 0, 6, 7, 8, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 6, 7, 8, 0, 0, 0, + 0, 0, 0, 5, 4, 3, 0, 0, 0, + 0, 0, 0, 0, 1, 2, 0, 0, 0, + }; + // Map advisor and bishop location into White King plane static constexpr uint8_t ABMap[SQUARE_NB] = { 0, 0, 0, 1, 0, 2, 5, 0, 0, @@ -133,9 +142,9 @@ class HalfKAv2_hm { static constexpr IndexType MaxActiveDimensions = 32; using IndexList = ValueList; - // Get a list of indices for active features + // Index of a feature for a given king position and another piece on some square template - static void append_active_indices(const Position& pos, IndexList& active); + static IndexType make_index(Square s, Piece pc, Square ksq, int ab); // Get a list of indices for recently changed features template diff --git a/src/nnue/network.cpp b/src/nnue/network.cpp index 5ec42b05..93dbeaae 100644 --- a/src/nnue/network.cpp +++ b/src/nnue/network.cpp @@ -126,7 +126,10 @@ bool Network::save(const std::optional& filename) const { } -Value Network::evaluate(const Position& pos, bool adjusted, int* complexity) const { +Value Network::evaluate(const Position& pos, + AccumulatorCaches::Cache* cache, + bool adjusted, + int* complexity) const { // We manually align the arrays on the stack because with gcc < 9.3 // overaligning stack variables with alignas() doesn't work correctly. @@ -145,7 +148,7 @@ Value Network::evaluate(const Position& pos, bool adjusted, int* complexity) con ASSERT_ALIGNED(transformedFeatures, alignment); const int bucket = (pos.count() - 1) / 4; - const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket); + const auto psqt = featureTransformer->transform(pos, cache, transformedFeatures, bucket); const auto positional = network[bucket]->propagate(transformedFeatures); if (complexity) @@ -188,12 +191,12 @@ void Network::verify(std::string evalfilePath) const { } -void Network::hint_common_access(const Position& pos) const { - featureTransformer->hint_common_access(pos); +void Network::hint_common_access(const Position& pos, AccumulatorCaches::Cache* cache) const { + featureTransformer->hint_common_access(pos, cache); } -NnueEvalTrace Network::trace_evaluate(const Position& pos) const { +NnueEvalTrace Network::trace_evaluate(const Position& pos, AccumulatorCaches::Cache* cache) const { // We manually align the arrays on the stack because with gcc < 9.3 // overaligning stack variables with alignas() doesn't work correctly. constexpr uint64_t alignment = CacheLineSize; @@ -214,8 +217,9 @@ NnueEvalTrace Network::trace_evaluate(const Position& pos) const { t.correctBucket = (pos.count() - 1) / 4; for (IndexType bucket = 0; bucket < LayerStacks; ++bucket) { - const auto materialist = featureTransformer->transform(pos, transformedFeatures, bucket); - const auto positional = network[bucket]->propagate(transformedFeatures); + const auto materialist = + featureTransformer->transform(pos, cache, transformedFeatures, bucket); + const auto positional = network[bucket]->propagate(transformedFeatures); t.psqt[bucket] = static_cast(materialist / OutputScale); t.positional[bucket] = static_cast(positional / OutputScale); diff --git a/src/nnue/network.h b/src/nnue/network.h index 13ecab11..c489785f 100644 --- a/src/nnue/network.h +++ b/src/nnue/network.h @@ -26,6 +26,7 @@ #include "nnue_architecture.h" #include "nnue_feature_transformer.h" #include "nnue_misc.h" +#include "nnue_accumulator.h" namespace Stockfish { @@ -42,13 +43,16 @@ class Network { bool save(const std::optional& filename) const; - Value evaluate(const Position& pos, bool adjusted = false, int* complexity = nullptr) const; + Value evaluate(const Position& pos, + AccumulatorCaches::Cache* cache, + bool adjusted = false, + int* complexity = nullptr) const; - void hint_common_access(const Position& pos) const; + void hint_common_access(const Position& pos, AccumulatorCaches::Cache* cache) const; void verify(std::string evalfilePath) const; - NnueEvalTrace trace_evaluate(const Position& pos) const; + NnueEvalTrace trace_evaluate(const Position& pos, AccumulatorCaches::Cache* cache) const; private: void load_user_net(const std::string&, const std::string&); @@ -75,6 +79,8 @@ class Network { // Hash value of evaluation function structure static constexpr std::uint32_t hash = FeatureTransformer::get_hash_value() ^ NetworkArchitecture::get_hash_value(); + + friend struct AccumulatorCaches::Cache; }; } // namespace Stockfish::Eval::NNUE diff --git a/src/nnue/nnue_accumulator.h b/src/nnue/nnue_accumulator.h index f6d70524..f3ab1a0a 100644 --- a/src/nnue/nnue_accumulator.h +++ b/src/nnue/nnue_accumulator.h @@ -28,11 +28,67 @@ namespace Stockfish::Eval::NNUE { +using BiasType = std::int16_t; +using PSQTWeightType = std::int32_t; +using IndexType = std::uint32_t; + // Class that holds the result of affine transformation of input features struct alignas(CacheLineSize) Accumulator { - std::int16_t accumulation[2][TransformedFeatureDimensions]; - std::int32_t psqtAccumulation[2][PSQTBuckets]; - bool computed[2]; + std::int16_t accumulation[COLOR_NB][TransformedFeatureDimensions]; + std::int32_t psqtAccumulation[COLOR_NB][PSQTBuckets]; + bool computed[COLOR_NB]; +}; + + +// AccumulatorCaches struct provides per-thread accumulator caches, where each +// cache contains multiple entries for each of the possible king squares. +// When the accumulator needs to be refreshed, the cached entry is used to more +// efficiently update the accumulator, instead of rebuilding it from scratch. +// This idea, was first described by Luecx (author of Koivisto) and +// is commonly referred to as "Finny Tables". +struct AccumulatorCaches { + + struct alignas(CacheLineSize) Cache { + + struct alignas(CacheLineSize) Entry { + BiasType accumulation[COLOR_NB][TransformedFeatureDimensions]; + PSQTWeightType psqtAccumulation[COLOR_NB][PSQTBuckets]; + Bitboard byColorBB[COLOR_NB][COLOR_NB]; + Bitboard byTypeBB[COLOR_NB][PIECE_TYPE_NB]; + + // To initialize a refresh entry, we set all its bitboards empty, + // so we put the biases in the accumulation, without any weights on top + void clear(const BiasType* biases) { + + std::memset(byColorBB, 0, sizeof(byColorBB)); + std::memset(byTypeBB, 0, sizeof(byTypeBB)); + + std::memcpy(accumulation[WHITE], biases, + TransformedFeatureDimensions * sizeof(BiasType)); + std::memcpy(accumulation[BLACK], biases, + TransformedFeatureDimensions * sizeof(BiasType)); + + std::memset(psqtAccumulation, 0, sizeof(psqtAccumulation)); + } + }; + + template + void clear(const Network& network) { + for (auto& entry : entries) + entry.clear(network.featureTransformer->biases); + } + + Entry& operator[](int index) { return entries[index]; } + + std::array entries; + }; + + template + void clear(const Network& network) { + cache.clear(network); + } + + Cache cache; }; } // namespace Stockfish::Eval::NNUE diff --git a/src/nnue/nnue_feature_transformer.h b/src/nnue/nnue_feature_transformer.h index c7381137..1331766f 100644 --- a/src/nnue/nnue_feature_transformer.h +++ b/src/nnue/nnue_feature_transformer.h @@ -232,10 +232,10 @@ static constexpr int NumPsqtRegs = // Input feature converter class FeatureTransformer { - private: // Number of output dimensions for one side static constexpr IndexType HalfDimensions = TransformedFeatureDimensions; + private: #ifdef VECTOR static constexpr IndexType TileHeight = NumRegs * sizeof(vec_t) / 2; static constexpr IndexType PsqtTileHeight = NumPsqtRegs * sizeof(psqt_vec_t) / 4; @@ -334,9 +334,12 @@ class FeatureTransformer { } // Convert input features - std::int32_t transform(const Position& pos, OutputType* output, int bucket) const { - update_accumulator(pos); - update_accumulator(pos); + std::int32_t transform(const Position& pos, + AccumulatorCaches::Cache* cache, + OutputType* output, + int bucket) const { + update_accumulator(pos, cache); + update_accumulator(pos, cache); const Color perspectives[2] = {pos.side_to_move(), ~pos.side_to_move()}; const auto& accumulation = pos.state()->accumulator.accumulation; @@ -396,9 +399,9 @@ class FeatureTransformer { return psqt; } // end of function transform() - void hint_common_access(const Position& pos) const { - hint_common_access_for_perspective(pos); - hint_common_access_for_perspective(pos); + void hint_common_access(const Position& pos, AccumulatorCaches::Cache* cache) const { + hint_common_access_for_perspective(pos, cache); + hint_common_access_for_perspective(pos, cache); } private: @@ -662,116 +665,148 @@ class FeatureTransformer { } template - void update_accumulator_refresh(const Position& pos) const { -#ifdef VECTOR - // Gcc-10.2 unnecessarily spills AVX2 registers if this array - // is defined in the VECTOR code below, once in each branch - vec_t acc[NumRegs]; - psqt_vec_t psqt[NumPsqtRegs]; -#endif + void update_accumulator_refresh(const Position& pos, AccumulatorCaches::Cache* cache) const { + assert(cache != nullptr); + + const Square ksq = pos.square(Perspective); + const int ab = pos.count(Perspective) * 3 + pos.count(Perspective); + + auto& entry = (*cache)[FeatureSet::KingCacheMaps[ksq] * 9 + ab]; - // Refresh the accumulator - // Could be extracted to a separate function because it's done in 2 places, - // but it's unclear if compilers would correctly handle register allocation. auto& accumulator = pos.state()->accumulator; accumulator.computed[Perspective] = true; - FeatureSet::IndexList active; - FeatureSet::append_active_indices(pos, active); + + FeatureSet::IndexList removed, added; + for (Color c : {WHITE, BLACK}) + { + for (PieceType pt = ROOK; pt <= KING; ++pt) + { + const Piece piece = make_piece(c, pt); + const Bitboard oldBB = + entry.byColorBB[Perspective][c] & entry.byTypeBB[Perspective][pt]; + const Bitboard newBB = pos.pieces(c, pt); + Bitboard toRemove = oldBB & ~newBB; + Bitboard toAdd = newBB & ~oldBB; + + while (toRemove) + { + Square sq = pop_lsb(toRemove); + removed.push_back(FeatureSet::make_index(sq, piece, ksq, ab)); + } + while (toAdd) + { + Square sq = pop_lsb(toAdd); + added.push_back(FeatureSet::make_index(sq, piece, ksq, ab)); + } + } + } #ifdef VECTOR + vec_t acc[NumRegs]; + psqt_vec_t psqt[NumPsqtRegs]; + for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j) { - auto biasesTile = reinterpret_cast(&biases[j * TileHeight]); + auto entryTile = + reinterpret_cast(&entry.accumulation[Perspective][j * TileHeight]); for (IndexType k = 0; k < NumRegs; ++k) - acc[k] = biasesTile[k]; + acc[k] = entryTile[k]; - int i = 0; - for (; i < int(active.size()) - 1; i += 2) + for (int i = 0; i < int(added.size()); ++i) { - IndexType index0 = active[i]; - IndexType index1 = active[i + 1]; - const IndexType offset0 = HalfDimensions * index0 + j * TileHeight; - const IndexType offset1 = HalfDimensions * index1 + j * TileHeight; - auto column0 = reinterpret_cast(&weights[offset0]); - auto column1 = reinterpret_cast(&weights[offset1]); + IndexType index = added[i]; + const IndexType offset = HalfDimensions * index + j * TileHeight; + auto column = reinterpret_cast(&weights[offset]); for (unsigned k = 0; k < NumRegs; ++k) - acc[k] = vec_add_16(acc[k], vec_add_16(column0[k], column1[k])); + acc[k] = vec_add_16(acc[k], column[k]); } - for (; i < int(active.size()); ++i) + for (int i = 0; i < int(removed.size()); ++i) { - IndexType index = active[i]; + IndexType index = removed[i]; const IndexType offset = HalfDimensions * index + j * TileHeight; auto column = reinterpret_cast(&weights[offset]); for (unsigned k = 0; k < NumRegs; ++k) - acc[k] = vec_add_16(acc[k], column[k]); + acc[k] = vec_sub_16(acc[k], column[k]); } - auto accTile = - reinterpret_cast(&accumulator.accumulation[Perspective][j * TileHeight]); - for (unsigned k = 0; k < NumRegs; k++) - vec_store(&accTile[k], acc[k]); + for (IndexType k = 0; k < NumRegs; k++) + vec_store(&entryTile[k], acc[k]); } for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j) { + auto entryTilePsqt = reinterpret_cast( + &entry.psqtAccumulation[Perspective][j * PsqtTileHeight]); for (std::size_t k = 0; k < NumPsqtRegs; ++k) - psqt[k] = vec_zero_psqt(); + psqt[k] = entryTilePsqt[k]; - int i = 0; - for (; i < int(active.size()) - 1; i += 2) + for (int i = 0; i < int(added.size()); ++i) { - IndexType index0 = active[i]; - IndexType index1 = active[i + 1]; - const IndexType offset0 = PSQTBuckets * index0 + j * PsqtTileHeight; - const IndexType offset1 = PSQTBuckets * index1 + j * PsqtTileHeight; - auto columnPsqt0 = reinterpret_cast(&psqtWeights[offset0]); - auto columnPsqt1 = reinterpret_cast(&psqtWeights[offset1]); + IndexType index = added[i]; + const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight; + auto columnPsqt = reinterpret_cast(&psqtWeights[offset]); for (std::size_t k = 0; k < NumPsqtRegs; ++k) - psqt[k] = - vec_add_psqt_32(psqt[k], vec_add_psqt_32(columnPsqt0[k], columnPsqt1[k])); + psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]); } - for (; i < int(active.size()); ++i) + for (int i = 0; i < int(removed.size()); ++i) { - IndexType index = active[i]; + IndexType index = removed[i]; const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight; auto columnPsqt = reinterpret_cast(&psqtWeights[offset]); for (std::size_t k = 0; k < NumPsqtRegs; ++k) - psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]); + psqt[k] = vec_sub_psqt_32(psqt[k], columnPsqt[k]); } - auto accTilePsqt = reinterpret_cast( - &accumulator.psqtAccumulation[Perspective][j * PsqtTileHeight]); for (std::size_t k = 0; k < NumPsqtRegs; ++k) - vec_store_psqt(&accTilePsqt[k], psqt[k]); + vec_store_psqt(&entryTilePsqt[k], psqt[k]); } #else - std::memcpy(accumulator.accumulation[Perspective], biases, - HalfDimensions * sizeof(BiasType)); - for (std::size_t k = 0; k < PSQTBuckets; ++k) - accumulator.psqtAccumulation[Perspective][k] = 0; - - for (const auto index : active) + for (const auto index : added) { const IndexType offset = HalfDimensions * index; + for (IndexType j = 0; j < HalfDimensions; ++j) + entry.accumulation[Perspective][j] += weights[offset + j]; + for (std::size_t k = 0; k < PSQTBuckets; ++k) + entry.psqtAccumulation[Perspective][k] += psqtWeights[index * PSQTBuckets + k]; + } + for (const auto index : removed) + { + const IndexType offset = HalfDimensions * index; for (IndexType j = 0; j < HalfDimensions; ++j) - accumulator.accumulation[Perspective][j] += weights[offset + j]; + entry.accumulation[Perspective][j] -= weights[offset + j]; for (std::size_t k = 0; k < PSQTBuckets; ++k) - accumulator.psqtAccumulation[Perspective][k] += - psqtWeights[index * PSQTBuckets + k]; + entry.psqtAccumulation[Perspective][k] -= psqtWeights[index * PSQTBuckets + k]; } + #endif + + // The accumulator of the refresh entry has been updated. + // Now copy its content to the actual accumulator we were refreshing + + std::memcpy(accumulator.psqtAccumulation[Perspective], entry.psqtAccumulation[Perspective], + sizeof(int32_t) * PSQTBuckets); + + std::memcpy(accumulator.accumulation[Perspective], entry.accumulation[Perspective], + sizeof(BiasType) * HalfDimensions); + + for (Color c : {WHITE, BLACK}) + entry.byColorBB[Perspective][c] = pos.pieces(c); + + for (PieceType pt = ROOK; pt <= KING; ++pt) + entry.byTypeBB[Perspective][pt] = pos.pieces(pt); } template - void hint_common_access_for_perspective(const Position& pos) const { + void hint_common_access_for_perspective(const Position& pos, + AccumulatorCaches::Cache* cache) const { // Works like update_accumulator, but performs less work. // Updates ONLY the accumulator for pos. @@ -791,11 +826,11 @@ class FeatureTransformer { update_accumulator_incremental(pos, oldest_st, states_to_update); } else - update_accumulator_refresh(pos); + update_accumulator_refresh(pos, cache); } template - void update_accumulator(const Position& pos) const { + void update_accumulator(const Position& pos, AccumulatorCaches::Cache* cache) const { auto [oldest_st, next] = try_find_computed_accumulator(pos); @@ -816,10 +851,12 @@ class FeatureTransformer { } else { - update_accumulator_refresh(pos); + update_accumulator_refresh(pos, cache); } } + friend struct AccumulatorCaches::Cache; + alignas(CacheLineSize) BiasType biases[HalfDimensions]; alignas(CacheLineSize) WeightType weights[HalfDimensions * InputDimensions]; alignas(CacheLineSize) PSQTWeightType psqtWeights[InputDimensions * PSQTBuckets]; diff --git a/src/nnue/nnue_misc.cpp b/src/nnue/nnue_misc.cpp index 8da47e9c..762fe49e 100644 --- a/src/nnue/nnue_misc.cpp +++ b/src/nnue/nnue_misc.cpp @@ -38,9 +38,11 @@ namespace Stockfish::Eval::NNUE { constexpr std::string_view PieceToChar(" RACPNBK racpnbk"); -void hint_common_parent_position(const Position& pos, const Network& network) { +void hint_common_parent_position(const Position& pos, + const Network& network, + AccumulatorCaches& caches) { - network.hint_common_access(pos); + network.hint_common_access(pos, &caches.cache); } namespace { @@ -96,7 +98,7 @@ void format_cp_aligned_dot(Value v, std::stringstream& stream, const Position& p // Returns a string with the value of each piece on a board, // and a table for (PSQT, Layers) values bucket by bucket. -std::string trace(Position& pos, const Eval::NNUE::Network& network) { +std::string trace(Position& pos, const Eval::NNUE::Network& network, AccumulatorCaches& caches) { std::stringstream ss; @@ -122,7 +124,7 @@ std::string trace(Position& pos, const Eval::NNUE::Network& network) { // We estimate the value of each piece by doing a differential evaluation from // the current base eval, simulating the removal of the piece from its square. - Value base = network.evaluate(pos); + Value base = network.evaluate(pos, &caches.cache); base = pos.side_to_move() == WHITE ? base : -base; for (File f = FILE_A; f <= FILE_I; ++f) @@ -140,7 +142,7 @@ std::string trace(Position& pos, const Eval::NNUE::Network& network) { st->accumulator.computed[WHITE] = false; st->accumulator.computed[BLACK] = false; - Value eval = network.evaluate(pos); + Value eval = network.evaluate(pos, &caches.cache); eval = pos.side_to_move() == WHITE ? eval : -eval; v = base - eval; @@ -157,7 +159,7 @@ std::string trace(Position& pos, const Eval::NNUE::Network& network) { ss << board[row] << '\n'; ss << '\n'; - auto t = network.trace_evaluate(pos); + auto t = network.trace_evaluate(pos, &caches.cache); ss << " NNUE network contributions " << (pos.side_to_move() == WHITE ? "(White to move)" : "(Black to move)") << std::endl @@ -171,11 +173,14 @@ std::string trace(Position& pos, const Eval::NNUE::Network& network) { ss << "| " << bucket << " "; ss << " | "; format_cp_aligned_dot(t.psqt[bucket], ss, pos); - ss << " " << " | "; + ss << " " + << " | "; format_cp_aligned_dot(t.positional[bucket], ss, pos); - ss << " " << " | "; + ss << " " + << " | "; format_cp_aligned_dot(t.psqt[bucket] + t.positional[bucket], ss, pos); - ss << " " << " |"; + ss << " " + << " |"; if (bucket == t.correctBucket) ss << " <-- this bucket is used"; ss << '\n'; diff --git a/src/nnue/nnue_misc.h b/src/nnue/nnue_misc.h index ce9960a3..e48516f1 100644 --- a/src/nnue/nnue_misc.h +++ b/src/nnue/nnue_misc.h @@ -47,12 +47,13 @@ struct NnueEvalTrace { std::size_t correctBucket; }; - class Network; +struct AccumulatorCaches; - -std::string trace(Position& pos, const Network& network); -void hint_common_parent_position(const Position& pos, const Network& network); +std::string trace(Position& pos, const Network& network, AccumulatorCaches& caches); +void hint_common_parent_position(const Position& pos, + const Network& network, + AccumulatorCaches& caches); } // namespace Stockfish::Eval::NNUE } // namespace Stockfish diff --git a/src/search.cpp b/src/search.cpp index 6fb9a963..1a28e5d4 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -33,6 +33,8 @@ #include "misc.h" #include "movegen.h" #include "movepick.h" +#include "nnue/network.h" +#include "nnue/nnue_accumulator.h" #include "nnue/nnue_common.h" #include "nnue/nnue_misc.h" #include "position.h" @@ -108,6 +110,7 @@ Search::Worker::Worker(SharedState& sharedState, // Unpack the SharedState struct into member variables thread_idx(thread_id), manager(std::move(sm)), + refreshTable(), options(sharedState.options), threads(sharedState.threads), tt(sharedState.tt), @@ -116,6 +119,10 @@ Search::Worker::Worker(SharedState& sharedState, } void Search::Worker::start_searching() { + + // Initialize accumulator refresh entries + refreshTable.clear(network); + // Non-main threads go directly to iterative_deepening() if (!is_mainthread()) { @@ -513,7 +520,7 @@ Value Search::Worker::search( if (threads.stop.load(std::memory_order_relaxed) || ss->ply >= MAX_PLY) return (ss->ply >= MAX_PLY && !ss->inCheck) - ? evaluate(network, pos, thisThread->optimism[us]) + ? evaluate(network, pos, refreshTable, thisThread->optimism[us]) : value_draw(thisThread->nodes); // Step 3. Mate distance pruning. Even if we mate at the next move our score @@ -594,7 +601,7 @@ Value Search::Worker::search( { // Providing the hint that this node's accumulator will be used often // brings significant Elo gain (~13 Elo). - Eval::NNUE::hint_common_parent_position(pos, network); + Eval::NNUE::hint_common_parent_position(pos, network, refreshTable); unadjustedStaticEval = eval = ss->staticEval; } else if (ss->ttHit) @@ -602,9 +609,9 @@ Value Search::Worker::search( // Never assume anything about values stored in TT unadjustedStaticEval = tte->eval(); if (unadjustedStaticEval == VALUE_NONE) - unadjustedStaticEval = evaluate(network, pos, thisThread->optimism[us]); + unadjustedStaticEval = evaluate(network, pos, refreshTable, thisThread->optimism[us]); else if (PvNode) - Eval::NNUE::hint_common_parent_position(pos, network); + Eval::NNUE::hint_common_parent_position(pos, network, refreshTable); ss->staticEval = eval = to_corrected_static_eval(unadjustedStaticEval, *thisThread, pos); @@ -614,7 +621,7 @@ Value Search::Worker::search( } else { - unadjustedStaticEval = evaluate(network, pos, thisThread->optimism[us]); + unadjustedStaticEval = evaluate(network, pos, refreshTable, thisThread->optimism[us]); ss->staticEval = eval = to_corrected_static_eval(unadjustedStaticEval, *thisThread, pos); // Static evaluation is saved as it was before adjustment by correction history @@ -771,7 +778,7 @@ Value Search::Worker::search( } } - Eval::NNUE::hint_common_parent_position(pos, network); + Eval::NNUE::hint_common_parent_position(pos, network, refreshTable); } moves_loop: // When in check, search starts here @@ -1320,7 +1327,8 @@ Value Search::Worker::qsearch(Position& pos, Stack* ss, Value alpha, Value beta, } if (ss->ply >= MAX_PLY) - return !ss->inCheck ? evaluate(network, pos, thisThread->optimism[us]) : VALUE_DRAW; + return !ss->inCheck ? evaluate(network, pos, refreshTable, thisThread->optimism[us]) + : VALUE_DRAW; assert(0 <= ss->ply && ss->ply < MAX_PLY); @@ -1351,7 +1359,8 @@ Value Search::Worker::qsearch(Position& pos, Stack* ss, Value alpha, Value beta, // Never assume anything about values stored in TT unadjustedStaticEval = tte->eval(); if (unadjustedStaticEval == VALUE_NONE) - unadjustedStaticEval = evaluate(network, pos, thisThread->optimism[us]); + unadjustedStaticEval = + evaluate(network, pos, refreshTable, thisThread->optimism[us]); ss->staticEval = bestValue = to_corrected_static_eval(unadjustedStaticEval, *thisThread, pos); @@ -1364,7 +1373,7 @@ Value Search::Worker::qsearch(Position& pos, Stack* ss, Value alpha, Value beta, { // In case of null move search, use previous static eval with a different sign unadjustedStaticEval = (ss - 1)->currentMove != Move::null() - ? evaluate(network, pos, thisThread->optimism[us]) + ? evaluate(network, pos, refreshTable, thisThread->optimism[us]) : -(ss - 1)->staticEval; ss->staticEval = bestValue = to_corrected_static_eval(unadjustedStaticEval, *thisThread, pos); diff --git a/src/search.h b/src/search.h index 28edf6b4..e09eae7b 100644 --- a/src/search.h +++ b/src/search.h @@ -26,9 +26,9 @@ #include #include #include +#include #include #include -#include #include "misc.h" #include "movepick.h" @@ -36,6 +36,7 @@ #include "score.h" #include "timeman.h" #include "types.h" +#include "nnue/nnue_accumulator.h" namespace Stockfish { @@ -295,6 +296,10 @@ class Worker { // The main thread has a SearchManager, the others have a NullSearchManager std::unique_ptr manager; + // Used by NNUE + + Eval::NNUE::AccumulatorCaches refreshTable; + const OptionsMap& options; ThreadPool& threads; TranspositionTable& tt; diff --git a/src/uci.cpp b/src/uci.cpp index f13fadad..4556bf08 100644 --- a/src/uci.cpp +++ b/src/uci.cpp @@ -275,9 +275,9 @@ void UCIEngine::bench(std::istream& args) { dbg_print(); - std::cerr << "\n===========================" << "\nTotal time (ms) : " << elapsed - << "\nNodes searched : " << nodes << "\nNodes/second : " << 1000 * nodes / elapsed - << std::endl; + std::cerr << "\n===========================" + << "\nTotal time (ms) : " << elapsed << "\nNodes searched : " << nodes + << "\nNodes/second : " << 1000 * nodes / elapsed << std::endl; // reset callback, to not capture a dangling reference to nodesSearched engine.set_on_update_full([&](const auto& i) { on_update_full(i, options["UCI_ShowWDL"]); }); @@ -290,7 +290,7 @@ void UCIEngine::setoption(std::istringstream& is) { } std::uint64_t UCIEngine::perft(const Search::LimitsType& limits) { - auto nodes = engine.perft(engine.fen(), limits.perft, engine.get_options()["UCI_Chess960"]); + auto nodes = engine.perft(engine.fen(), limits.perft); sync_cout << "\nNodes searched: " << nodes << "\n" << sync_endl; return nodes; }