forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmachine_i2s.c
618 lines (537 loc) · 22.4 KB
/
machine_i2s.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Bryan Morrissey
* Copyright (c) 2021 Mike Teachman
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_i2s.c via MICROPY_PY_MACHINE_I2S_INCLUDEFILE.
#include <stdlib.h>
#include <string.h>
#include "py/mphal.h"
#include "pin.h"
#include "dma.h"
#include "genhdr/plli2stable.h"
// Notes on this port's specific implementation of I2S:
// - the DMA callbacks (1/2 complete and complete) are used to implement the asynchronous background operations
// - all 3 Modes of operation are implemented using the HAL I2S Generic Driver
// - all sample data transfers use DMA
// - the DMA controller is configured in Circular mode to fulfil continuous and gapless sample flows
// - the DMA ping-pong buffer needs to be aligned to a cache line size of 32 bytes. 32 byte
// alignment is needed to use the routines that clean and invalidate D-Cache which work on a
// 32 byte address boundary. Not all STM32 devices have a D-Cache. Buffer alignment
// will still happen on these devices to keep this code simple.
// DMA ping-pong buffer size was empirically determined. It is a tradeoff between:
// 1. memory use (smaller buffer size desirable to reduce memory footprint)
// 2. interrupt frequency (larger buffer size desirable to reduce interrupt frequency)
// The sizeof 1/2 of the DMA buffer must be evenly divisible by the cache line size of 32 bytes.
#define SIZEOF_DMA_BUFFER_IN_BYTES (256)
#define SIZEOF_HALF_DMA_BUFFER_IN_BYTES (SIZEOF_DMA_BUFFER_IN_BYTES / 2)
// For non-blocking mode, to avoid underflow/overflow, sample data is written/read to/from the ring buffer at a rate faster
// than the DMA transfer rate
#define NON_BLOCKING_RATE_MULTIPLIER (4)
#define SIZEOF_NON_BLOCKING_COPY_IN_BYTES (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * NON_BLOCKING_RATE_MULTIPLIER)
typedef enum {
TOP_HALF,
BOTTOM_HALF
} ping_pong_t;
typedef struct _plli2s_config_t {
uint32_t rate;
uint8_t bits;
uint8_t plli2sr;
uint16_t plli2sn;
} plli2s_config_t;
typedef struct _machine_i2s_obj_t {
mp_obj_base_t base;
uint8_t i2s_id;
mp_hal_pin_obj_t sck;
mp_hal_pin_obj_t ws;
mp_hal_pin_obj_t sd;
uint16_t mode;
int8_t bits;
format_t format;
int32_t rate;
int32_t ibuf;
mp_obj_t callback_for_non_blocking;
uint8_t dma_buffer[SIZEOF_DMA_BUFFER_IN_BYTES + 0x1f]; // 0x1f related to D-Cache alignment
uint8_t *dma_buffer_dcache_aligned;
ring_buf_t ring_buffer;
uint8_t *ring_buffer_storage;
non_blocking_descriptor_t non_blocking_descriptor;
io_mode_t io_mode;
I2S_HandleTypeDef hi2s;
DMA_HandleTypeDef hdma_tx;
DMA_HandleTypeDef hdma_rx;
const dma_descr_t *dma_descr_tx;
const dma_descr_t *dma_descr_rx;
} machine_i2s_obj_t;
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in);
// The frame map is used with the readinto() method to transform the audio sample data coming
// from DMA memory (32-bit stereo) to the format specified
// in the I2S constructor. e.g. 16-bit mono
STATIC const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = {
{ 0, 1, -1, -1, -1, -1, -1, -1 }, // Mono, 16-bits
{ 2, 3, 0, 1, -1, -1, -1, -1 }, // Mono, 32-bits
{ 0, 1, -1, -1, 2, 3, -1, -1 }, // Stereo, 16-bits
{ 2, 3, 0, 1, 6, 7, 4, 5 }, // Stereo, 32-bits
};
STATIC const plli2s_config_t plli2s_config[] = PLLI2S_TABLE;
void machine_i2s_init0() {
for (uint8_t i = 0; i < MICROPY_HW_MAX_I2S; i++) {
MP_STATE_PORT(machine_i2s_obj)[i] = NULL;
}
}
STATIC bool lookup_plli2s_config(int8_t bits, int32_t rate, uint16_t *plli2sn, uint16_t *plli2sr) {
for (uint16_t i = 0; i < MP_ARRAY_SIZE(plli2s_config); i++) {
if ((plli2s_config[i].bits == bits) && (plli2s_config[i].rate == rate)) {
*plli2sn = plli2s_config[i].plli2sn;
*plli2sr = plli2s_config[i].plli2sr;
return true;
}
}
return false;
}
// For 32-bit audio samples, the STM32 HAL API expects each 32-bit sample to be encoded
// in an unusual byte ordering: Byte_2, Byte_3, Byte_0, Byte_1
// where: Byte_0 is the least significant byte of the 32-bit sample
//
// The following function takes a buffer containing 32-bits sample values formatted as little endian
// and performs an in-place modification into the STM32 HAL API convention
//
// Example:
//
// wav_samples[] = [L_0-7, L_8-15, L_16-23, L_24-31, R_0-7, R_8-15, R_16-23, R_24-31] = [Left channel, Right channel]
// stm_api[] = [L_16-23, L_24-31, L_0-7, L_8-15, R_16-23, R_24-31, R_0-7, R_8-15] = [Left channel, Right channel]
//
// where:
// L_0-7 is the least significant byte of the 32 bit sample in the Left channel
// L_24-31 is the most significant byte of the 32 bit sample in the Left channel
//
// wav_samples[] = [0x99, 0xBB, 0x11, 0x22, 0x44, 0x55, 0xAB, 0x77] = [Left channel, Right channel]
// stm_api[] = [0x11, 0x22, 0x99, 0xBB, 0xAB, 0x77, 0x44, 0x55] = [Left channel, Right channel]
//
// where:
// LEFT Channel = 0x99, 0xBB, 0x11, 0x22
// RIGHT Channel = 0x44, 0x55, 0xAB, 0x77
STATIC void reformat_32_bit_samples(int32_t *sample, uint32_t num_samples) {
int16_t sample_ms;
int16_t sample_ls;
for (uint32_t i = 0; i < num_samples; i++) {
sample_ls = sample[i] & 0xFFFF;
sample_ms = sample[i] >> 16;
sample[i] = (sample_ls << 16) + sample_ms;
}
}
STATIC int8_t get_frame_mapping_index(int8_t bits, format_t format) {
if (format == MONO) {
if (bits == 16) {
return 0;
} else { // 32 bits
return 1;
}
} else { // STEREO
if (bits == 16) {
return 2;
} else { // 32 bits
return 3;
}
}
}
STATIC int8_t get_dma_bits(uint16_t mode, int8_t bits) {
if (mode == I2S_MODE_MASTER_TX) {
if (bits == 16) {
return I2S_DATAFORMAT_16B;
} else {
return I2S_DATAFORMAT_32B;
}
return bits;
} else { // Master Rx
// always read 32 bit words for I2S e.g. I2S MEMS microphones
return I2S_DATAFORMAT_32B;
}
}
// function is used in IRQ context
STATIC void empty_dma(machine_i2s_obj_t *self, ping_pong_t dma_ping_pong) {
uint16_t dma_buffer_offset = 0;
if (dma_ping_pong == TOP_HALF) {
dma_buffer_offset = 0;
} else { // BOTTOM_HALF
dma_buffer_offset = SIZEOF_HALF_DMA_BUFFER_IN_BYTES;
}
uint8_t *dma_buffer_p = &self->dma_buffer_dcache_aligned[dma_buffer_offset];
// flush and invalidate cache so the CPU reads data placed into RAM by DMA
MP_HAL_CLEANINVALIDATE_DCACHE(dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
// when space exists, copy samples into ring buffer
if (ringbuf_available_space(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
ringbuf_push(&self->ring_buffer, dma_buffer_p[i]);
}
}
}
// function is used in IRQ context
STATIC void feed_dma(machine_i2s_obj_t *self, ping_pong_t dma_ping_pong) {
uint16_t dma_buffer_offset = 0;
if (dma_ping_pong == TOP_HALF) {
dma_buffer_offset = 0;
} else { // BOTTOM_HALF
dma_buffer_offset = SIZEOF_HALF_DMA_BUFFER_IN_BYTES;
}
uint8_t *dma_buffer_p = &self->dma_buffer_dcache_aligned[dma_buffer_offset];
// when data exists, copy samples from ring buffer
if (ringbuf_available_data(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
// copy a block of samples from the ring buffer to the dma buffer.
// STM32 HAL API has a stereo I2S implementation, but not mono
// mono format is implemented by duplicating each sample into both L and R channels.
if ((self->format == MONO) && (self->bits == 16)) {
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 4; i++) {
for (uint8_t b = 0; b < sizeof(uint16_t); b++) {
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 4 + b]);
dma_buffer_p[i * 4 + b + 2] = dma_buffer_p[i * 4 + b]; // duplicated mono sample
}
}
} else if ((self->format == MONO) && (self->bits == 32)) {
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 8; i++) {
for (uint8_t b = 0; b < sizeof(uint32_t); b++) {
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 8 + b]);
dma_buffer_p[i * 8 + b + 4] = dma_buffer_p[i * 8 + b]; // duplicated mono sample
}
}
} else { // STEREO, both 16-bit and 32-bit
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i]);
}
}
// reformat 32 bit samples to match STM32 HAL API format
if (self->bits == 32) {
reformat_32_bit_samples((int32_t *)dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES / (sizeof(uint32_t)));
}
} else {
// underflow. clear buffer to transmit "silence" on the I2S bus
memset(dma_buffer_p, 0, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
}
// flush cache to RAM so DMA can read the sample data
MP_HAL_CLEAN_DCACHE(dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
}
STATIC bool i2s_init(machine_i2s_obj_t *self) {
// init the GPIO lines
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
GPIO_InitStructure.Pull = GPIO_PULLUP;
if (self->i2s_id == 1) {
self->hi2s.Instance = I2S1;
__SPI1_CLK_ENABLE();
// configure DMA streams
if (self->mode == I2S_MODE_MASTER_RX) {
self->dma_descr_rx = &dma_I2S_1_RX;
} else {
self->dma_descr_tx = &dma_I2S_1_TX;
}
} else if (self->i2s_id == 2) {
self->hi2s.Instance = I2S2;
__SPI2_CLK_ENABLE();
// configure DMA streams
if (self->mode == I2S_MODE_MASTER_RX) {
self->dma_descr_rx = &dma_I2S_2_RX;
} else {
self->dma_descr_tx = &dma_I2S_2_TX;
}
} else {
// invalid id number; should not get here as i2s object should not
// have been created without setting a valid i2s instance number
return false;
}
// GPIO Pin initialization
if (self->sck != MP_OBJ_TO_PTR(MP_OBJ_NULL)) {
GPIO_InitStructure.Pin = self->sck->pin_mask;
const pin_af_obj_t *af = pin_find_af(self->sck, AF_FN_I2S, self->i2s_id);
GPIO_InitStructure.Alternate = (uint8_t)af->idx;
HAL_GPIO_Init(self->sck->gpio, &GPIO_InitStructure);
}
if (self->ws != MP_OBJ_TO_PTR(MP_OBJ_NULL)) {
GPIO_InitStructure.Pin = self->ws->pin_mask;
const pin_af_obj_t *af = pin_find_af(self->ws, AF_FN_I2S, self->i2s_id);
GPIO_InitStructure.Alternate = (uint8_t)af->idx;
HAL_GPIO_Init(self->ws->gpio, &GPIO_InitStructure);
}
if (self->sd != MP_OBJ_TO_PTR(MP_OBJ_NULL)) {
GPIO_InitStructure.Pin = self->sd->pin_mask;
const pin_af_obj_t *af = pin_find_af(self->sd, AF_FN_I2S, self->i2s_id);
GPIO_InitStructure.Alternate = (uint8_t)af->idx;
HAL_GPIO_Init(self->sd->gpio, &GPIO_InitStructure);
}
// configure I2S PLL
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_I2S;
// lookup optimal PLL multiplier (PLLI2SN) and divisor (PLLI2SR) for a given sample size and sampling frequency
uint16_t plli2sn;
uint16_t plli2sr;
if (lookup_plli2s_config(self->mode == I2S_MODE_MASTER_RX ? 32 : self->bits, self->rate, &plli2sn, &plli2sr)) {
// match found
PeriphClkInitStruct.PLLI2S.PLLI2SN = plli2sn;
PeriphClkInitStruct.PLLI2S.PLLI2SR = plli2sr;
} else {
// no match for sample size and rate
// configure PLL to use power-on default values when a non-standard sampling frequency is used
PeriphClkInitStruct.PLLI2S.PLLI2SN = 192;
PeriphClkInitStruct.PLLI2S.PLLI2SR = 2;
}
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) {
return false;
}
if (HAL_I2S_Init(&self->hi2s) == HAL_OK) {
// Reset and initialize Tx and Rx DMA channels
if (self->mode == I2S_MODE_MASTER_RX) {
dma_invalidate_channel(self->dma_descr_rx);
dma_init(&self->hdma_rx, self->dma_descr_rx, DMA_PERIPH_TO_MEMORY, &self->hi2s);
self->hi2s.hdmarx = &self->hdma_rx;
} else { // I2S_MODE_MASTER_TX
dma_invalidate_channel(self->dma_descr_tx);
dma_init(&self->hdma_tx, self->dma_descr_tx, DMA_MEMORY_TO_PERIPH, &self->hi2s);
self->hi2s.hdmatx = &self->hdma_tx;
}
return true;
} else {
return false;
}
}
void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s) {
uint32_t errorCode = HAL_I2S_GetError(hi2s);
mp_printf(MICROPY_ERROR_PRINTER, "I2S Error = %ld\n", errorCode);
}
void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s) {
machine_i2s_obj_t *self;
if (hi2s->Instance == I2S1) {
self = MP_STATE_PORT(machine_i2s_obj)[0];
} else {
self = MP_STATE_PORT(machine_i2s_obj)[1];
}
// bottom half of buffer now filled,
// safe to empty the bottom half while the top half of buffer is being filled
empty_dma(self, BOTTOM_HALF);
// for non-blocking operation, this IRQ-based callback handles
// the readinto() method requests.
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
fill_appbuf_from_ringbuf_non_blocking(self);
}
}
void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s) {
machine_i2s_obj_t *self;
if (hi2s->Instance == I2S1) {
self = MP_STATE_PORT(machine_i2s_obj)[0];
} else {
self = MP_STATE_PORT(machine_i2s_obj)[1];
}
// top half of buffer now filled,
// safe to empty the top half while the bottom half of buffer is being filled
empty_dma(self, TOP_HALF);
// for non-blocking operation, this IRQ-based callback handles
// the readinto() method requests.
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
fill_appbuf_from_ringbuf_non_blocking(self);
}
}
void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s) {
machine_i2s_obj_t *self;
if (hi2s->Instance == I2S1) {
self = MP_STATE_PORT(machine_i2s_obj)[0];
} else {
self = MP_STATE_PORT(machine_i2s_obj)[1];
}
// for non-blocking operation, this IRQ-based callback handles
// the write() method requests.
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
copy_appbuf_to_ringbuf_non_blocking(self);
}
// bottom half of buffer now emptied,
// safe to fill the bottom half while the top half of buffer is being emptied
feed_dma(self, BOTTOM_HALF);
}
void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s) {
machine_i2s_obj_t *self;
if (hi2s->Instance == I2S1) {
self = MP_STATE_PORT(machine_i2s_obj)[0];
} else {
self = MP_STATE_PORT(machine_i2s_obj)[1];
}
// for non-blocking operation, this IRQ-based callback handles
// the write() method requests.
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
copy_appbuf_to_ringbuf_non_blocking(self);
}
// top half of buffer now emptied,
// safe to fill the top half while the bottom half of buffer is being emptied
feed_dma(self, TOP_HALF);
}
STATIC void mp_machine_i2s_init_helper(machine_i2s_obj_t *self, mp_arg_val_t *args) {
memset(&self->hi2s, 0, sizeof(self->hi2s));
// are I2S pin assignments valid?
const pin_af_obj_t *pin_af;
// is SCK valid?
if (mp_obj_is_type(args[ARG_sck].u_obj, &pin_type)) {
pin_af = pin_find_af(MP_OBJ_TO_PTR(args[ARG_sck].u_obj), AF_FN_I2S, self->i2s_id);
if (pin_af->type != AF_PIN_TYPE_I2S_CK) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid SCK pin"));
}
} else {
mp_raise_ValueError(MP_ERROR_TEXT("SCK not a Pin type"));
}
// is WS valid?
if (mp_obj_is_type(args[ARG_ws].u_obj, &pin_type)) {
pin_af = pin_find_af(MP_OBJ_TO_PTR(args[ARG_ws].u_obj), AF_FN_I2S, self->i2s_id);
if (pin_af->type != AF_PIN_TYPE_I2S_WS) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid WS pin"));
}
} else {
mp_raise_ValueError(MP_ERROR_TEXT("WS not a Pin type"));
}
// is SD valid?
if (mp_obj_is_type(args[ARG_sd].u_obj, &pin_type)) {
pin_af = pin_find_af(MP_OBJ_TO_PTR(args[ARG_sd].u_obj), AF_FN_I2S, self->i2s_id);
if (pin_af->type != AF_PIN_TYPE_I2S_SD) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid SD pin"));
}
} else {
mp_raise_ValueError(MP_ERROR_TEXT("SD not a Pin type"));
}
// is Mode valid?
uint16_t i2s_mode = args[ARG_mode].u_int;
if ((i2s_mode != (I2S_MODE_MASTER_RX)) &&
(i2s_mode != (I2S_MODE_MASTER_TX))) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid mode"));
}
// is Bits valid?
int8_t i2s_bits = args[ARG_bits].u_int;
if ((i2s_bits != 16) &&
(i2s_bits != 32)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
}
// is Format valid?
format_t i2s_format = args[ARG_format].u_int;
if ((i2s_format != MONO) &&
(i2s_format != STEREO)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid format"));
}
// is Rate valid?
// Not checked
// is Ibuf valid?
int32_t ring_buffer_len = args[ARG_ibuf].u_int;
if (ring_buffer_len > 0) {
uint8_t *buffer = m_new(uint8_t, ring_buffer_len);
self->ring_buffer_storage = buffer;
ringbuf_init(&self->ring_buffer, buffer, ring_buffer_len);
} else {
mp_raise_ValueError(MP_ERROR_TEXT("invalid ibuf"));
}
self->sck = MP_OBJ_TO_PTR(args[ARG_sck].u_obj);
self->ws = MP_OBJ_TO_PTR(args[ARG_ws].u_obj);
self->sd = MP_OBJ_TO_PTR(args[ARG_sd].u_obj);
self->mode = i2s_mode;
self->bits = i2s_bits;
self->format = i2s_format;
self->rate = args[ARG_rate].u_int;
self->ibuf = ring_buffer_len;
self->callback_for_non_blocking = MP_OBJ_NULL;
self->non_blocking_descriptor.copy_in_progress = false;
self->io_mode = BLOCKING;
I2S_InitTypeDef *init = &self->hi2s.Init;
init->Mode = i2s_mode;
init->Standard = I2S_STANDARD_PHILIPS;
init->DataFormat = get_dma_bits(self->mode, self->bits);
init->MCLKOutput = I2S_MCLKOUTPUT_DISABLE;
init->AudioFreq = args[ARG_rate].u_int;
init->CPOL = I2S_CPOL_LOW;
init->ClockSource = I2S_CLOCK_PLL;
#if defined(STM32F4)
init->FullDuplexMode = I2S_FULLDUPLEXMODE_DISABLE;
#endif
// init the I2S bus
if (!i2s_init(self)) {
mp_raise_msg_varg(&mp_type_OSError, MP_ERROR_TEXT("I2S init failed"));
}
// start DMA. DMA is configured to run continuously, using a circular buffer configuration
uint32_t number_of_samples = 0;
if (init->DataFormat == I2S_DATAFORMAT_16B) {
number_of_samples = SIZEOF_DMA_BUFFER_IN_BYTES / sizeof(uint16_t);
} else { // 32 bits
number_of_samples = SIZEOF_DMA_BUFFER_IN_BYTES / sizeof(uint32_t);
}
HAL_StatusTypeDef status;
if (self->mode == I2S_MODE_MASTER_TX) {
status = HAL_I2S_Transmit_DMA(&self->hi2s, (void *)self->dma_buffer_dcache_aligned, number_of_samples);
} else { // RX
status = HAL_I2S_Receive_DMA(&self->hi2s, (void *)self->dma_buffer_dcache_aligned, number_of_samples);
}
if (status != HAL_OK) {
mp_raise_msg_varg(&mp_type_OSError, MP_ERROR_TEXT("DMA init failed"));
}
}
STATIC machine_i2s_obj_t *mp_machine_i2s_make_new_instance(mp_int_t i2s_id) {
uint8_t i2s_id_zero_base = 0;
if (0) {
#ifdef MICROPY_HW_I2S1
} else if (i2s_id == 1) {
i2s_id_zero_base = 0;
#endif
#ifdef MICROPY_HW_I2S2
} else if (i2s_id == 2) {
i2s_id_zero_base = 1;
#endif
} else {
mp_raise_ValueError(MP_ERROR_TEXT("invalid id"));
}
machine_i2s_obj_t *self;
if (MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base] == NULL) {
self = mp_obj_malloc(machine_i2s_obj_t, &machine_i2s_type);
MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base] = self;
self->i2s_id = i2s_id;
} else {
self = MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base];
machine_i2s_deinit(MP_OBJ_FROM_PTR(self));
}
// align DMA buffer start to the cache line size (32 bytes)
self->dma_buffer_dcache_aligned = (uint8_t *)((uint32_t)(self->dma_buffer + 0x1f) & ~0x1f);
return self;
}
STATIC void mp_machine_i2s_deinit(machine_i2s_obj_t *self) {
if (self->ring_buffer_storage != NULL) {
dma_deinit(self->dma_descr_tx);
dma_deinit(self->dma_descr_rx);
HAL_I2S_DeInit(&self->hi2s);
if (self->hi2s.Instance == I2S1) {
__SPI1_FORCE_RESET();
__SPI1_RELEASE_RESET();
__SPI1_CLK_DISABLE();
} else if (self->hi2s.Instance == I2S2) {
__SPI2_FORCE_RESET();
__SPI2_RELEASE_RESET();
__SPI2_CLK_DISABLE();
}
m_free(self->ring_buffer_storage);
self->ring_buffer_storage = NULL;
}
}
STATIC void mp_machine_i2s_irq_update(machine_i2s_obj_t *self) {
(void)self;
}
MP_REGISTER_ROOT_POINTER(struct _machine_i2s_obj_t *machine_i2s_obj[MICROPY_HW_MAX_I2S]);