forked from notanumber/xapian-haystack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxapian_backend.py
executable file
·1695 lines (1404 loc) · 64.4 KB
/
xapian_backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import unicode_literals
import datetime
import pickle
import os
import re
import shutil
import sys
from django.utils import six
from django.conf import settings
from django.core.exceptions import ImproperlyConfigured
from django.utils.encoding import force_text
from haystack import connections
from haystack.backends import BaseEngine, BaseSearchBackend, BaseSearchQuery, SearchNode, log_query
from haystack.constants import ID, DJANGO_ID, DJANGO_CT, DEFAULT_OPERATOR
from haystack.exceptions import HaystackError, MissingDependency
from haystack.inputs import AutoQuery
from haystack.models import SearchResult
from haystack.utils import get_identifier, get_model_ct
NGRAM_MIN_LENGTH = 2
NGRAM_MAX_LENGTH = 15
try:
import xapian
except ImportError:
raise MissingDependency("The 'xapian' backend requires the installation of 'Xapian'. "
"Please refer to the documentation.")
if sys.version_info[0] == 2:
DirectoryExistsException = OSError
elif sys.version_info[0] == 3:
DirectoryExistsException = FileExistsError
class NotSupportedError(Exception):
"""
When the installed version of Xapian doesn't support something and we have
the old implementation.
"""
pass
# this maps the different reserved fields to prefixes used to
# create the database:
# id str: unique document id.
# django_id int: id of the django model instance.
# django_ct str: of the content type of the django model.
# field str: name of the field of the index.
TERM_PREFIXES = {
ID: 'Q',
DJANGO_ID: 'QQ',
DJANGO_CT: 'CONTENTTYPE',
'field': 'X'
}
MEMORY_DB_NAME = ':memory:'
DEFAULT_XAPIAN_FLAGS = (
xapian.QueryParser.FLAG_PHRASE |
xapian.QueryParser.FLAG_BOOLEAN |
xapian.QueryParser.FLAG_LOVEHATE |
xapian.QueryParser.FLAG_WILDCARD |
xapian.QueryParser.FLAG_PURE_NOT
)
# Mapping from `HAYSTACK_DEFAULT_OPERATOR` to Xapian operators
XAPIAN_OPTS = {'AND': xapian.Query.OP_AND,
'OR': xapian.Query.OP_OR,
'PHRASE': xapian.Query.OP_PHRASE,
'NEAR': xapian.Query.OP_NEAR
}
# number of documents checked by default when building facets
# this must be improved to be relative to the total number of docs.
DEFAULT_CHECK_AT_LEAST = 1000
# field types accepted to be serialized as values in Xapian
FIELD_TYPES = {'text', 'integer', 'date', 'datetime', 'float', 'boolean',
'edge_ngram', 'ngram'}
# defines the format used to store types in Xapian
# this format ensures datetimes are sorted correctly
DATETIME_FORMAT = '%Y%m%d%H%M%S'
INTEGER_FORMAT = '%012d'
# defines the distance given between
# texts with positional information
TERMPOS_DISTANCE = 100
class InvalidIndexError(HaystackError):
"""Raised when an index can not be opened."""
pass
class XHValueRangeProcessor(xapian.ValueRangeProcessor):
"""
A Processor to construct ranges of values
"""
def __init__(self, backend):
self.backend = backend
xapian.ValueRangeProcessor.__init__(self)
def __call__(self, begin, end):
"""
Construct a tuple for value range processing.
`begin` -- a string in the format '<field_name>:[low_range]'
If 'low_range' is omitted, assume the smallest possible value.
`end` -- a string in the the format '[high_range|*]'. If '*', assume
the highest possible value.
Return a tuple of three strings: (column, low, high)
"""
colon = begin.find(':')
field_name = begin[:colon]
begin = begin[colon + 1:len(begin)]
for field_dict in self.backend.schema:
if field_dict['field_name'] == field_name:
field_type = field_dict['type']
if not begin:
if field_type == 'text':
begin = 'a' # TODO: A better way of getting a min text value?
elif field_type == 'integer':
begin = -sys.maxsize - 1
elif field_type == 'float':
begin = float('-inf')
elif field_type == 'date' or field_type == 'datetime':
begin = '00010101000000'
elif end == '*':
if field_type == 'text':
end = 'z' * 100 # TODO: A better way of getting a max text value?
elif field_type == 'integer':
end = sys.maxsize
elif field_type == 'float':
end = float('inf')
elif field_type == 'date' or field_type == 'datetime':
end = '99990101000000'
if field_type == 'float':
begin = _term_to_xapian_value(float(begin), field_type)
end = _term_to_xapian_value(float(end), field_type)
elif field_type == 'integer':
begin = _term_to_xapian_value(int(begin), field_type)
end = _term_to_xapian_value(int(end), field_type)
return field_dict['column'], str(begin), str(end)
class XHExpandDecider(xapian.ExpandDecider):
def __call__(self, term):
"""
Return True if the term should be used for expanding the search
query, False otherwise.
Ignore terms related with the content type of objects.
"""
if term.decode('utf-8').startswith(TERM_PREFIXES[DJANGO_CT]):
return False
return True
class XapianSearchBackend(BaseSearchBackend):
"""
`SearchBackend` defines the Xapian search backend for use with the Haystack
API for Django search.
It uses the Xapian Python bindings to interface with Xapian, and as
such is subject to this bug: <http://trac.xapian.org/ticket/364> when
Django is running with mod_python or mod_wsgi under Apache.
Until this issue has been fixed by Xapian, it is neccessary to set
`WSGIApplicationGroup to %{GLOBAL}` when using mod_wsgi, or
`PythonInterpreter main_interpreter` when using mod_python.
In order to use this backend, `PATH` must be included in the
`connection_options`. This should point to a location where you would your
indexes to reside.
"""
inmemory_db = None
def __init__(self, connection_alias, **connection_options):
"""
Instantiates an instance of `SearchBackend`.
Optional arguments:
`connection_alias` -- The name of the connection
`language` -- The stemming language (default = 'english')
`**connection_options` -- The various options needed to setup
the backend.
Also sets the stemming language to be used to `language`.
"""
super(XapianSearchBackend, self).__init__(connection_alias, **connection_options)
if not 'PATH' in connection_options:
raise ImproperlyConfigured("You must specify a 'PATH' in your settings for connection '%s'."
% connection_alias)
self.path = connection_options.get('PATH')
if self.path != MEMORY_DB_NAME:
try:
os.makedirs(self.path)
except DirectoryExistsException:
pass
self.flags = connection_options.get('FLAGS', DEFAULT_XAPIAN_FLAGS)
self.language = getattr(settings, 'HAYSTACK_XAPIAN_LANGUAGE', 'english')
stemming_strategy_string = getattr(settings, 'HAYSTACK_XAPIAN_STEMMING_STRATEGY', 'STEM_SOME')
self.stemming_strategy = getattr(xapian.QueryParser, stemming_strategy_string, xapian.QueryParser.STEM_SOME)
# these 4 attributes are caches populated in `build_schema`
# they are checked in `_update_cache`
# use property to retrieve them
self._fields = {}
self._schema = []
self._content_field_name = None
self._columns = {}
def _update_cache(self):
"""
To avoid build_schema every time, we cache
some values: they only change when a SearchIndex
changes, which typically restarts the Python.
"""
fields = connections[self.connection_alias].get_unified_index().all_searchfields()
if self._fields != fields:
self._fields = fields
self._content_field_name, self._schema = self.build_schema(self._fields)
@property
def schema(self):
self._update_cache()
return self._schema
@property
def content_field_name(self):
self._update_cache()
return self._content_field_name
@property
def column(self):
"""
Returns the column in the database of a given field name.
"""
self._update_cache()
return self._columns
def update(self, index, iterable, commit=True):
"""
Updates the `index` with any objects in `iterable` by adding/updating
the database as needed.
Required arguments:
`index` -- The `SearchIndex` to process
`iterable` -- An iterable of model instances to index
Optional arguments:
`commit` -- ignored
For each object in `iterable`, a document is created containing all
of the terms extracted from `index.full_prepare(obj)` with field prefixes,
and 'as-is' as needed. Also, if the field type is 'text' it will be
stemmed and stored with the 'Z' prefix as well.
eg. `content:Testing` ==> `testing, Ztest, ZXCONTENTtest, XCONTENTtest`
Each document also contains an extra term in the format:
`XCONTENTTYPE<app_name>.<model_name>`
As well as a unique identifier in the the format:
`Q<app_name>.<model_name>.<pk>`
eg.: foo.bar (pk=1) ==> `Qfoo.bar.1`, `XCONTENTTYPEfoo.bar`
This is useful for querying for a specific document corresponding to
a model instance.
The document also contains a pickled version of the object itself and
the document ID in the document data field.
Finally, we also store field values to be used for sorting data. We
store these in the document value slots (position zero is reserver
for the document ID). All values are stored as unicode strings with
conversion of float, int, double, values being done by Xapian itself
through the use of the :method:xapian.sortable_serialise method.
"""
database = self._database(writable=True)
try:
term_generator = xapian.TermGenerator()
term_generator.set_database(database)
term_generator.set_stemmer(xapian.Stem(self.language))
try:
term_generator.set_stemming_strategy(self.stemming_strategy)
except AttributeError:
# Versions before Xapian 1.2.11 do not support stemming strategies for TermGenerator
pass
if self.include_spelling is True:
term_generator.set_flags(xapian.TermGenerator.FLAG_SPELLING)
def _add_text(termpos, text, weight, prefix=''):
"""
indexes text appending 2 extra terms
to identify beginning and ending of the text.
"""
term_generator.set_termpos(termpos)
start_term = '%s^' % prefix
end_term = '%s$' % prefix
# add begin
document.add_posting(start_term, termpos, weight)
# add text
term_generator.index_text(text, weight, prefix)
termpos = term_generator.get_termpos()
# add ending
termpos += 1
document.add_posting(end_term, termpos, weight)
# increase termpos
term_generator.set_termpos(termpos)
term_generator.increase_termpos(TERMPOS_DISTANCE)
return term_generator.get_termpos()
def _add_literal_text(termpos, text, weight, prefix=''):
"""
Adds sentence to the document with positional information
but without processing.
The sentence is bounded by "^" "$" to allow exact matches.
"""
text = '^ %s $' % text
for word in text.split():
term = '%s%s' % (prefix, word)
document.add_posting(term, termpos, weight)
termpos += 1
termpos += TERMPOS_DISTANCE
return termpos
def add_text(termpos, prefix, text, weight):
"""
Adds text to the document with positional information
and processing (e.g. stemming).
"""
termpos = _add_text(termpos, text, weight, prefix=prefix)
termpos = _add_text(termpos, text, weight, prefix='')
termpos = _add_literal_text(termpos, text, weight, prefix=prefix)
termpos = _add_literal_text(termpos, text, weight, prefix='')
return termpos
def _get_ngram_lengths(value):
values = value.split()
for item in values:
for ngram_length in six.moves.range(NGRAM_MIN_LENGTH, NGRAM_MAX_LENGTH + 1):
yield item, ngram_length
for obj in iterable:
document = xapian.Document()
term_generator.set_document(document)
def ngram_terms(value):
for item, length in _get_ngram_lengths(value):
item_length = len(item)
for start in six.moves.range(0, item_length - length + 1):
for size in six.moves.range(length, length + 1):
end = start + size
if end > item_length:
continue
yield _to_xapian_term(item[start:end])
def edge_ngram_terms(value):
for item, length in _get_ngram_lengths(value):
yield _to_xapian_term(item[0:length])
def add_edge_ngram_to_document(prefix, value, weight):
"""
Splits the term in ngrams and adds each ngram to the index.
The minimum and maximum size of the ngram is respectively
NGRAM_MIN_LENGTH and NGRAM_MAX_LENGTH.
"""
for term in edge_ngram_terms(value):
document.add_term(term, weight)
document.add_term(prefix + term, weight)
def add_ngram_to_document(prefix, value, weight):
"""
Splits the term in ngrams and adds each ngram to the index.
The minimum and maximum size of the ngram is respectively
NGRAM_MIN_LENGTH and NGRAM_MAX_LENGTH.
"""
for term in ngram_terms(value):
document.add_term(term, weight)
document.add_term(prefix + term, weight)
def add_non_text_to_document(prefix, term, weight):
"""
Adds term to the document without positional information
and without processing.
If the term is alone, also adds it as "^<term>$"
to allow exact matches on single terms.
"""
document.add_term(term, weight)
document.add_term(prefix + term, weight)
def add_datetime_to_document(termpos, prefix, term, weight):
"""
Adds a datetime to document with positional order
to allow exact matches on it.
"""
date, time = term.split()
document.add_posting(date, termpos, weight)
termpos += 1
document.add_posting(time, termpos, weight)
termpos += 1
document.add_posting(prefix + date, termpos, weight)
termpos += 1
document.add_posting(prefix + time, termpos, weight)
termpos += TERMPOS_DISTANCE + 1
return termpos
data = index.full_prepare(obj)
weights = index.get_field_weights()
termpos = term_generator.get_termpos() # identifies the current position in the document.
for field in self.schema:
if field['field_name'] not in list(data.keys()):
# not supported fields are ignored.
continue
if field['field_name'] in weights:
weight = int(weights[field['field_name']])
else:
weight = 1
value = data[field['field_name']]
if field['field_name'] in (ID, DJANGO_ID, DJANGO_CT):
# Private fields are indexed in a different way:
# `django_id` is an int and `django_ct` is text;
# besides, they are indexed by their (unstemmed) value.
if field['field_name'] == DJANGO_ID:
value = int(value)
value = _term_to_xapian_value(value, field['type'])
document.add_term(TERM_PREFIXES[field['field_name']] + value, weight)
document.add_value(field['column'], value)
continue
else:
prefix = TERM_PREFIXES['field'] + field['field_name'].upper()
# if not multi_valued, we add as a document value
# for sorting and facets
if field['multi_valued'] == 'false':
document.add_value(field['column'], _term_to_xapian_value(value, field['type']))
else:
for t in value:
# add the exact match of each value
term = _to_xapian_term(t)
termpos = add_text(termpos, prefix, term, weight)
continue
term = _to_xapian_term(value)
if term == '':
continue
# from here on the term is a string;
# we now decide how it is indexed
if field['type'] == 'text':
# text is indexed with positional information
termpos = add_text(termpos, prefix, term, weight)
elif field['type'] == 'datetime':
termpos = add_datetime_to_document(termpos, prefix, term, weight)
elif field['type'] == 'ngram':
add_ngram_to_document(prefix, value, weight)
elif field['type'] == 'edge_ngram':
add_edge_ngram_to_document(prefix, value, weight)
else:
# all other terms are added without positional information
add_non_text_to_document(prefix, term, weight)
# store data without indexing it
document.set_data(pickle.dumps(
(obj._meta.app_label, obj._meta.model_name, obj.pk, data),
pickle.HIGHEST_PROTOCOL
))
# add the id of the document
document_id = TERM_PREFIXES[ID] + get_identifier(obj)
document.add_term(document_id)
# finally, replace or add the document to the database
database.replace_document(document_id, document)
except UnicodeDecodeError:
sys.stderr.write('Chunk failed.\n')
pass
finally:
database.close()
def remove(self, obj, commit=True):
"""
Remove indexes for `obj` from the database.
We delete all instances of `Q<app_name>.<model_name>.<pk>` which
should be unique to this object.
Optional arguments:
`commit` -- ignored
"""
database = self._database(writable=True)
database.delete_document(TERM_PREFIXES[ID] + get_identifier(obj))
database.close()
def clear(self, models=(), commit=True):
"""
Clear all instances of `models` from the database or all models, if
not specified.
Optional Arguments:
`models` -- Models to clear from the database (default = [])
If `models` is empty, an empty query is executed which matches all
documents in the database. Afterwards, each match is deleted.
Otherwise, for each model, a `delete_document` call is issued with
the term `XCONTENTTYPE<app_name>.<model_name>`. This will delete
all documents with the specified model type.
"""
if not models:
# Because there does not appear to be a "clear all" method,
# it's much quicker to remove the contents of the `self.path`
# folder than it is to remove each document one at a time.
if os.path.exists(self.path):
shutil.rmtree(self.path)
else:
database = self._database(writable=True)
for model in models:
database.delete_document(TERM_PREFIXES[DJANGO_CT] + get_model_ct(model))
database.close()
def document_count(self):
try:
return self._database().get_doccount()
except InvalidIndexError:
return 0
def _build_models_query(self, query):
"""
Builds a query from `query` that filters to documents only from registered models.
"""
registered_models_ct = self.build_models_list()
if registered_models_ct:
restrictions = [xapian.Query('%s%s' % (TERM_PREFIXES[DJANGO_CT], model_ct))
for model_ct in registered_models_ct]
limit_query = xapian.Query(xapian.Query.OP_OR, restrictions)
query = xapian.Query(xapian.Query.OP_AND, query, limit_query)
return query
def _check_field_names(self, field_names):
"""
Raises InvalidIndexError if any of a field_name in field_names is
not indexed.
"""
if field_names:
for field_name in field_names:
try:
self.column[field_name]
except KeyError:
raise InvalidIndexError('Trying to use non indexed field "%s"' % field_name)
@log_query
def search(self, query, sort_by=None, start_offset=0, end_offset=None,
fields='', highlight=False, facets=None, date_facets=None,
query_facets=None, narrow_queries=None, spelling_query=None,
limit_to_registered_models=None, result_class=None, **kwargs):
"""
Executes the Xapian::query as defined in `query`.
Required arguments:
`query` -- Search query to execute
Optional arguments:
`sort_by` -- Sort results by specified field (default = None)
`start_offset` -- Slice results from `start_offset` (default = 0)
`end_offset` -- Slice results at `end_offset` (default = None), if None, then all documents
`fields` -- Filter results on `fields` (default = '')
`highlight` -- Highlight terms in results (default = False)
`facets` -- Facet results on fields (default = None)
`date_facets` -- Facet results on date ranges (default = None)
`query_facets` -- Facet results on queries (default = None)
`narrow_queries` -- Narrow queries (default = None)
`spelling_query` -- An optional query to execute spelling suggestion on
`limit_to_registered_models` -- Limit returned results to models registered in
the current `SearchSite` (default = True)
Returns:
A dictionary with the following keys:
`results` -- A list of `SearchResult`
`hits` -- The total available results
`facets` - A dictionary of facets with the following keys:
`fields` -- A list of field facets
`dates` -- A list of date facets
`queries` -- A list of query facets
If faceting was not used, the `facets` key will not be present
If `query` is None, returns no results.
If `INCLUDE_SPELLING` was enabled in the connection options, the
extra flag `FLAG_SPELLING_CORRECTION` will be passed to the query parser
and any suggestions for spell correction will be returned as well as
the results.
"""
if xapian.Query.empty(query):
return {
'results': [],
'hits': 0,
}
self._check_field_names(facets)
self._check_field_names(date_facets)
self._check_field_names(query_facets)
database = self._database()
if limit_to_registered_models is None:
limit_to_registered_models = getattr(settings, 'HAYSTACK_LIMIT_TO_REGISTERED_MODELS', True)
if result_class is None:
result_class = SearchResult
if self.include_spelling is True:
spelling_suggestion = self._do_spelling_suggestion(database, query, spelling_query)
else:
spelling_suggestion = ''
if narrow_queries is not None:
query = xapian.Query(
xapian.Query.OP_AND, query, xapian.Query(
xapian.Query.OP_AND, [self.parse_query(narrow_query) for narrow_query in narrow_queries]
)
)
if limit_to_registered_models:
query = self._build_models_query(query)
enquire = xapian.Enquire(database)
if hasattr(settings, 'HAYSTACK_XAPIAN_WEIGHTING_SCHEME'):
enquire.set_weighting_scheme(xapian.BM25Weight(*settings.HAYSTACK_XAPIAN_WEIGHTING_SCHEME))
enquire.set_query(query)
if sort_by:
try:
_xapian_sort(enquire, sort_by, self.column)
except NotSupportedError:
_old_xapian_sort(enquire, sort_by, self.column)
results = []
facets_dict = {
'fields': {},
'dates': {},
'queries': {},
}
if not end_offset:
end_offset = database.get_doccount() - start_offset
## prepare spies in case of facets
if facets:
facets_spies = self._prepare_facet_field_spies(facets)
for spy in facets_spies:
enquire.add_matchspy(spy)
# print enquire.get_query()
matches = self._get_enquire_mset(database, enquire, start_offset, end_offset)
for match in matches:
app_label, model_name, pk, model_data = pickle.loads(self._get_document_data(database, match.document))
if highlight:
model_data['highlighted'] = {
self.content_field_name: self._do_highlight(
model_data.get(self.content_field_name), query
)
}
results.append(
result_class(app_label, model_name, pk, match.percent, **model_data)
)
if facets:
# pick single valued facets from spies
single_facets_dict = self._process_facet_field_spies(facets_spies)
# pick multivalued valued facets from results
multi_facets_dict = self._do_multivalued_field_facets(results, facets)
# merge both results (http://stackoverflow.com/a/38990/931303)
facets_dict['fields'] = dict(list(single_facets_dict.items()) + list(multi_facets_dict.items()))
if date_facets:
facets_dict['dates'] = self._do_date_facets(results, date_facets)
if query_facets:
facets_dict['queries'] = self._do_query_facets(results, query_facets)
return {
'results': results,
'hits': self._get_hit_count(database, enquire),
'facets': facets_dict,
'spelling_suggestion': spelling_suggestion,
}
def more_like_this(self, model_instance, additional_query=None,
start_offset=0, end_offset=None,
limit_to_registered_models=True, result_class=None, **kwargs):
"""
Given a model instance, returns a result set of similar documents.
Required arguments:
`model_instance` -- The model instance to use as a basis for
retrieving similar documents.
Optional arguments:
`additional_query` -- An additional query to narrow results
`start_offset` -- The starting offset (default=0)
`end_offset` -- The ending offset (default=None), if None, then all documents
`limit_to_registered_models` -- Limit returned results to models registered in the search (default = True)
Returns:
A dictionary with the following keys:
`results` -- A list of `SearchResult`
`hits` -- The total available results
Opens a database connection, then builds a simple query using the
`model_instance` to build the unique identifier.
For each document retrieved(should always be one), adds an entry into
an RSet (relevance set) with the document id, then, uses the RSet
to query for an ESet (A set of terms that can be used to suggest
expansions to the original query), omitting any document that was in
the original query.
Finally, processes the resulting matches and returns.
"""
database = self._database()
if result_class is None:
result_class = SearchResult
query = xapian.Query(TERM_PREFIXES[ID] + get_identifier(model_instance))
enquire = xapian.Enquire(database)
enquire.set_query(query)
rset = xapian.RSet()
if not end_offset:
end_offset = database.get_doccount()
match = None
for match in self._get_enquire_mset(database, enquire, 0, end_offset):
rset.add_document(match.docid)
if match is None:
if not self.silently_fail:
raise InvalidIndexError('Instance %s with id "%d" not indexed' %
(get_identifier(model_instance), model_instance.id))
else:
return {'results': [],
'hits': 0}
query = xapian.Query(
xapian.Query.OP_ELITE_SET,
[expand.term for expand in enquire.get_eset(match.document.termlist_count(), rset, XHExpandDecider())],
match.document.termlist_count()
)
query = xapian.Query(
xapian.Query.OP_AND_NOT, [query, TERM_PREFIXES[ID] + get_identifier(model_instance)]
)
if limit_to_registered_models:
query = self._build_models_query(query)
if additional_query:
query = xapian.Query(
xapian.Query.OP_AND, query, additional_query
)
enquire.set_query(query)
results = []
matches = self._get_enquire_mset(database, enquire, start_offset, end_offset)
for match in matches:
app_label, model_name, pk, model_data = pickle.loads(self._get_document_data(database, match.document))
results.append(
result_class(app_label, model_name, pk, match.percent, **model_data)
)
return {
'results': results,
'hits': self._get_hit_count(database, enquire),
'facets': {
'fields': {},
'dates': {},
'queries': {},
},
'spelling_suggestion': None,
}
def parse_query(self, query_string):
"""
Given a `query_string`, will attempt to return a xapian.Query
Required arguments:
``query_string`` -- A query string to parse
Returns a xapian.Query
"""
if query_string == '*':
return xapian.Query('') # Match everything
elif query_string == '':
return xapian.Query() # Match nothing
qp = xapian.QueryParser()
qp.set_database(self._database())
qp.set_stemmer(xapian.Stem(self.language))
qp.set_stemming_strategy(self.stemming_strategy)
qp.set_default_op(XAPIAN_OPTS[DEFAULT_OPERATOR])
qp.add_boolean_prefix(DJANGO_CT, TERM_PREFIXES[DJANGO_CT])
for field_dict in self.schema:
# since 'django_ct' has a boolean_prefix,
# we ignore it here.
if field_dict['field_name'] == DJANGO_CT:
continue
qp.add_prefix(
field_dict['field_name'],
TERM_PREFIXES['field'] + field_dict['field_name'].upper()
)
vrp = XHValueRangeProcessor(self)
qp.add_valuerangeprocessor(vrp)
return qp.parse_query(query_string, self.flags)
def build_schema(self, fields):
"""
Build the schema from fields.
:param fields: A list of fields in the index
:returns: list of dictionaries
Each dictionary has the keys
field_name: The name of the field index
type: what type of value it is
'multi_valued': if it allows more than one value
'column': a number identifying it
'type': the type of the field
'multi_valued': 'false', 'column': 0}
"""
content_field_name = ''
schema_fields = [
{'field_name': ID,
'type': 'text',
'multi_valued': 'false',
'column': 0},
{'field_name': DJANGO_ID,
'type': 'integer',
'multi_valued': 'false',
'column': 1},
{'field_name': DJANGO_CT,
'type': 'text',
'multi_valued': 'false',
'column': 2},
]
self._columns[ID] = 0
self._columns[DJANGO_ID] = 1
self._columns[DJANGO_CT] = 2
column = len(schema_fields)
for field_name, field_class in sorted(list(fields.items()), key=lambda n: n[0]):
if field_class.document is True:
content_field_name = field_class.index_fieldname
if field_class.indexed is True:
field_data = {
'field_name': field_class.index_fieldname,
'type': 'text',
'multi_valued': 'false',
'column': column,
}
if field_class.field_type == 'date':
field_data['type'] = 'date'
elif field_class.field_type == 'datetime':
field_data['type'] = 'datetime'
elif field_class.field_type == 'integer':
field_data['type'] = 'integer'
elif field_class.field_type == 'float':
field_data['type'] = 'float'
elif field_class.field_type == 'boolean':
field_data['type'] = 'boolean'
elif field_class.field_type == 'ngram':
field_data['type'] = 'ngram'
elif field_class.field_type == 'edge_ngram':
field_data['type'] = 'edge_ngram'
if field_class.is_multivalued:
field_data['multi_valued'] = 'true'
schema_fields.append(field_data)
self._columns[field_data['field_name']] = column
column += 1
return content_field_name, schema_fields
@staticmethod
def _do_highlight(content, query, tag='em'):
"""
Highlight `query` terms in `content` with html `tag`.
This method assumes that the input text (`content`) does not contain
any special formatting. That is, it does not contain any html tags
or similar markup that could be screwed up by the highlighting.
Required arguments:
`content` -- Content to search for instances of `text`
`text` -- The text to be highlighted
"""
for term in query:
term = term.decode('utf-8')
for match in re.findall('[^A-Z]+', term): # Ignore field identifiers
match_re = re.compile(match, re.I)
content = match_re.sub('<%s>%s</%s>' % (tag, term, tag), content)
return content
def _prepare_facet_field_spies(self, facets):
"""
Returns a list of spies based on the facets
used to count frequencies.
"""
spies = []
for facet in facets:
slot = self.column[facet]
spy = xapian.ValueCountMatchSpy(slot)
# add attribute "slot" to know which column this spy is targeting.
spy.slot = slot
spies.append(spy)
return spies
def _process_facet_field_spies(self, spies):
"""
Returns a dict of facet names with lists of
tuples of the form (term, term_frequency)
from a list of spies that observed the enquire.
"""
facet_dict = {}
for spy in spies:
field = self.schema[spy.slot]
field_name, field_type = field['field_name'], field['type']
facet_dict[field_name] = []
for facet in list(spy.values()):
if field_type == 'float':
# the float term is a Xapian serialized object, which is
# in bytes.
term = facet.term
else:
term = facet.term.decode('utf-8')
facet_dict[field_name].append((_from_xapian_value(term, field_type),
facet.termfreq))
return facet_dict
def _do_multivalued_field_facets(self, results, field_facets):
"""
Implements a multivalued field facet on the results.
This is implemented using brute force - O(N^2) -
because Xapian does not have it implemented yet
(see http://trac.xapian.org/ticket/199)
"""
facet_dict = {}
for field in field_facets:
facet_list = {}
if not self._multi_value_field(field):
continue
for result in results: