This repository has been archived by the owner on Jan 1, 2025. It is now read-only.
forked from ASUS-AICS/LibMultiLabel-Old-Archive
-
Notifications
You must be signed in to change notification settings - Fork 3
/
torch_trainer.py
309 lines (273 loc) · 13.9 KB
/
torch_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import logging
import os
import numpy as np
from lightning.pytorch.callbacks import ModelCheckpoint
from transformers import AutoTokenizer
from libmultilabel.common_utils import dump_log, is_multiclass_dataset
from libmultilabel.nn import data_utils
from libmultilabel.nn.model import Model
from libmultilabel.nn.nn_utils import init_device, init_model, init_trainer, set_seed
from libmultilabel.nn.attentionxml import PLTTrainer
class TorchTrainer:
"""A wrapper for training neural network models with pytorch lightning trainer.
Args:
config (AttributeDict): Config of the experiment.
datasets (dict, optional): Datasets for training, validation, and test. Defaults to None.
classes(list, optional): List of class names.
word_dict(torchtext.vocab.Vocab, optional): A vocab object which maps tokens to indices.
embed_vecs (torch.Tensor, optional): The pre-trained word vectors of shape (vocab_size, embed_dim).
save_checkpoints (bool, optional): Whether to save the last and the best checkpoint or not.
Defaults to True.
"""
def __init__(
self,
config: dict,
datasets: dict = None,
classes: list = None,
word_dict: dict = None,
embed_vecs=None,
save_checkpoints: bool = True,
):
self.run_name = config.run_name
self.checkpoint_dir = config.checkpoint_dir
self.log_path = config.log_path
os.makedirs(self.checkpoint_dir, exist_ok=True)
# Set up seed & device
set_seed(seed=config.seed)
self.device = init_device(use_cpu=config.cpu)
self.config = config
# Load pretrained tokenizer for dataset loader
self.tokenizer = None
tokenize_text = "lm_weight" not in config.network_config
if not tokenize_text:
self.tokenizer = AutoTokenizer.from_pretrained(config.network_config["lm_weight"], use_fast=True)
# Load dataset
if datasets is None:
self.datasets = data_utils.load_datasets(
training_data=config.training_file,
test_data=config.test_file,
val_data=config.val_file,
val_size=config.val_size,
merge_train_val=config.merge_train_val,
tokenize_text=tokenize_text,
remove_no_label_data=config.remove_no_label_data,
)
else:
self.datasets = datasets
self.config.multiclass = is_multiclass_dataset(self.datasets["train"] + self.datasets.get("val", list()))
if self.config.model_name.lower() == "attentionxml":
# Note that AttentionXML produces two models. checkpoint_path directs to model_1
if config.checkpoint_path is None:
if self.config.embed_file is not None:
logging.info("Load word dictionary ")
word_dict, embed_vecs = data_utils.load_or_build_text_dict(
dataset=self.datasets["train"] + self.datasets["val"],
vocab_file=config.vocab_file,
min_vocab_freq=config.min_vocab_freq,
embed_file=config.embed_file,
silent=config.silent,
normalize_embed=config.normalize_embed,
embed_cache_dir=config.embed_cache_dir,
)
if not classes:
classes = data_utils.load_or_build_label(
self.datasets, self.config.label_file, self.config.include_test_labels
)
if self.config.early_stopping_metric not in self.config.monitor_metrics:
logging.warning(
f"{self.config.early_stopping_metric} is not in `monitor_metrics`. "
f"Add {self.config.early_stopping_metric} to `monitor_metrics`."
)
self.config.monitor_metrics += [self.config.early_stopping_metric]
if self.config.val_metric not in self.config.monitor_metrics:
logging.warn(
f"{self.config.val_metric} is not in `monitor_metrics`. "
f"Add {self.config.val_metric} to `monitor_metrics`."
)
self.config.monitor_metrics += [self.config.val_metric]
self.trainer = PLTTrainer(self.config, classes=classes, embed_vecs=embed_vecs, word_dict=word_dict)
return
self._setup_model(
classes=classes,
word_dict=word_dict,
embed_vecs=embed_vecs,
log_path=self.log_path,
checkpoint_path=config.checkpoint_path,
)
self.trainer = init_trainer(
checkpoint_dir=self.checkpoint_dir,
epochs=config.epochs,
patience=config.patience,
early_stopping_metric=config.early_stopping_metric,
val_metric=config.val_metric,
silent=config.silent,
use_cpu=config.cpu,
limit_train_batches=config.limit_train_batches,
limit_val_batches=config.limit_val_batches,
limit_test_batches=config.limit_test_batches,
save_checkpoints=save_checkpoints,
)
callbacks = [callback for callback in self.trainer.callbacks if isinstance(callback, ModelCheckpoint)]
self.checkpoint_callback = callbacks[0] if callbacks else None
def _setup_model(
self,
classes: list = None,
word_dict: dict = None,
embed_vecs=None,
log_path: str = None,
checkpoint_path: str = None,
):
"""Setup model from checkpoint if a checkpoint path is passed in or specified in the config.
Otherwise, initialize model from scratch.
Args:
classes(list): List of class names.
word_dict(torchtext.vocab.Vocab): A vocab object which maps tokens to indices.
embed_vecs (torch.Tensor): The pre-trained word vectors of shape (vocab_size, embed_dim).
log_path (str): Path to the log file. The log file contains the validation
results for each epoch and the test results. If the `log_path` is None, no performance
results will be logged.
checkpoint_path (str): The checkpoint to warm-up with.
"""
if "checkpoint_path" in self.config and self.config.checkpoint_path is not None:
checkpoint_path = self.config.checkpoint_path
if checkpoint_path is not None:
logging.info(f"Loading model from `{checkpoint_path}` with the previously saved hyper-parameter...")
self.model = Model.load_from_checkpoint(checkpoint_path, log_path=log_path)
else:
logging.info("Initialize model from scratch.")
if self.config.embed_file is not None:
logging.info("Load word dictionary ")
word_dict, embed_vecs = data_utils.load_or_build_text_dict(
dataset=self.datasets["train"],
vocab_file=self.config.vocab_file,
min_vocab_freq=self.config.min_vocab_freq,
embed_file=self.config.embed_file,
silent=self.config.silent,
normalize_embed=self.config.normalize_embed,
embed_cache_dir=self.config.embed_cache_dir,
)
if not classes:
classes = data_utils.load_or_build_label(
self.datasets, self.config.label_file, self.config.include_test_labels
)
if self.config.early_stopping_metric not in self.config.monitor_metrics:
logging.warn(
f"{self.config.early_stopping_metric} is not in `monitor_metrics`. "
f"Add {self.config.early_stopping_metric} to `monitor_metrics`."
)
self.config.monitor_metrics += [self.config.early_stopping_metric]
if self.config.val_metric not in self.config.monitor_metrics:
logging.warn(
f"{self.config.val_metric} is not in `monitor_metrics`. "
f"Add {self.config.val_metric} to `monitor_metrics`."
)
self.config.monitor_metrics += [self.config.val_metric]
self.model = init_model(
model_name=self.config.model_name,
network_config=dict(self.config.network_config),
classes=classes,
word_dict=word_dict,
embed_vecs=embed_vecs,
init_weight=self.config.init_weight,
log_path=log_path,
learning_rate=self.config.learning_rate,
optimizer=self.config.optimizer,
momentum=self.config.momentum,
weight_decay=self.config.weight_decay,
lr_scheduler=self.config.lr_scheduler,
scheduler_config=self.config.scheduler_config,
val_metric=self.config.val_metric,
metric_threshold=self.config.metric_threshold,
monitor_metrics=self.config.monitor_metrics,
multiclass=self.config.multiclass,
loss_function=self.config.loss_function,
silent=self.config.silent,
save_k_predictions=self.config.save_k_predictions,
)
def _get_dataset_loader(self, split, shuffle=False):
"""Get dataset loader.
Args:
split (str): One of 'train', 'test', or 'val'.
shuffle (bool): Whether to shuffle training data before each epoch. Defaults to False.
Returns:
torch.utils.data.DataLoader: Dataloader for the train, test, or valid dataset.
"""
return data_utils.get_dataset_loader(
data=self.datasets[split],
classes=self.model.classes,
device=self.device,
max_seq_length=self.config.max_seq_length,
batch_size=self.config.batch_size if split == "train" else self.config.eval_batch_size,
shuffle=shuffle,
data_workers=self.config.data_workers,
word_dict=self.model.word_dict,
tokenizer=self.tokenizer,
add_special_tokens=self.config.add_special_tokens,
)
def train(self):
"""Train model with pytorch lightning trainer. Set model to the best model after the training
process is finished.
"""
if self.config.model_name.lower() == "attentionxml":
self.trainer.fit(self.datasets)
dump_log(self.log_path, config=self.config)
return
assert (
self.trainer is not None
), "Please make sure the trainer is successfully initialized by `self._setup_trainer()`."
train_loader = self._get_dataset_loader(split="train", shuffle=self.config.shuffle)
if "val" not in self.datasets:
logging.info("No validation dataset is provided. Train without vaildation.")
self.trainer.fit(self.model, train_loader)
else:
val_loader = self._get_dataset_loader(split="val")
self.trainer.fit(self.model, train_loader, val_loader)
# Set model to the best model. If the validation process is skipped during
# training (i.e., val_size=0), the model is set to the last model.
model_path = self.checkpoint_callback.best_model_path or self.checkpoint_callback.last_model_path
if model_path:
logging.info(f"Finished training. Load best model from {model_path}.")
self._setup_model(checkpoint_path=model_path, log_path=self.log_path)
else:
logging.info(
"No model is saved during training. \
If you want to save the best and the last model, please set `save_checkpoints` to True."
)
dump_log(self.log_path, config=self.config)
# return best model score for ray
return self.checkpoint_callback.best_model_score.item() if self.checkpoint_callback.best_model_score else None
def test(self, split="test"):
"""Test model with pytorch lightning trainer. Top-k predictions are saved
if `save_k_predictions` > 0.
Args:
split (str, optional): One of 'train', 'test', or 'val'. Defaults to 'test'.
Returns:
dict: Scores for all metrics in the dictionary format.
"""
assert "test" in self.datasets and self.trainer is not None
if self.config.model_name.lower() == "attentionxml":
self.trainer.test(self.datasets["test"])
return
logging.info(f"Testing on {split} set.")
test_loader = self._get_dataset_loader(split=split)
metric_dict = self.trainer.test(self.model, dataloaders=test_loader, verbose=False)[0]
if self.config.save_k_predictions > 0:
self._save_predictions(test_loader, self.config.predict_out_path)
dump_log(self.log_path, config=self.config)
return metric_dict
def _save_predictions(self, dataloader, predict_out_path):
"""Save top k label results.
Args:
dataloader (torch.utils.data.DataLoader): Dataloader for the test or valid dataset.
predict_out_path (str): Path to the an output file holding top k label results.
"""
batch_predictions = self.trainer.predict(self.model, dataloaders=dataloader)
pred_labels = np.vstack([batch["top_k_pred"] for batch in batch_predictions])
pred_scores = np.vstack([batch["top_k_pred_scores"] for batch in batch_predictions])
with open(predict_out_path, "w") as fp:
for pred_label, pred_score in zip(pred_labels, pred_scores):
out_str = " ".join(
[f"{self.model.classes[label]}:{score:.4}" for label, score in zip(pred_label, pred_score)]
)
fp.write(out_str + "\n")
logging.info(f"Saved predictions to: {predict_out_path}")