This repository has been archived by the owner on Oct 31, 2022. It is now read-only.
forked from openai/gpt-2
-
Notifications
You must be signed in to change notification settings - Fork 443
/
train.py
executable file
·314 lines (265 loc) · 14.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#!/usr/bin/env python3
# Usage:
# PYTHONPATH=src ./train --dataset <file|directory|glob>
import argparse
import json
import os, sys
import numpy as np
import tensorflow.compat.v1 as tf
import tensorflow as tf2
import time
import tqdm
if tf.VERSION >= '2':
tf.disable_eager_execution()
tf.config.experimental.enable_tensor_float_32_execution(False)
tf.config.optimizer.set_experimental_options({'layout_optimizer': False,
'constant_folding': False,
'shape_optimization': False,
'remapping': False,
'arithmetic_optimization': False,
'dependency_optimization': False,
'loop_optimization': False,
'disable_meta_optimizer': True
})
import model, sample, encoder
from load_dataset import load_dataset, Sampler
CHECKPOINT_DIR = 'checkpoint'
SAMPLE_DIR = 'samples'
parser = argparse.ArgumentParser(
description='Fine-tune GPT-2 on your custom dataset.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', metavar='PATH', type=str, required=True, help='Input file, directory, or glob pattern (utf-8 text, or preencoded .npz files).')
parser.add_argument('--model_name', metavar='MODEL', type=str, default='124M', help='Pretrained model name')
parser.add_argument('--models_dir', metavar='PATH', type=str, default='models', help='Path to models directory')
parser.add_argument('--combine', metavar='CHARS', type=int, default=50000, help='Concatenate input files with <|endoftext|> separator into chunks of this minimum size')
parser.add_argument('--encoding', type=str, default='utf-8', help='Set the encoding for reading and writing files.')
parser.add_argument('--batch_size', metavar='SIZE', type=int, default=1, help='Batch size')
parser.add_argument('--learning_rate', metavar='LR', type=float, default=0.00002, help='Learning rate for Adam')
parser.add_argument('--accumulate_gradients', metavar='N', type=int, default=1, help='Accumulate gradients across N minibatches.')
parser.add_argument('--memory_saving_gradients', default=False, action='store_true', help='Use gradient checkpointing to reduce vram usage.')
parser.add_argument('--twremat', default=False, action='store_true', help='Use tensor rematerialization (better than memory_saving_gradients and works with tensorflow 2.0).')
parser.add_argument('--twremat_memlimit', type=str, default='12G', help='Memory usage limit/target for twremat. Can be an integer, or an integer suffixed with K/M/G for kilo/mega/giga-bytes.')
parser.add_argument('--only_train_transformer_layers', default=False, action='store_true', help='Restrict training to the transformer blocks.')
parser.add_argument('--optimizer', type=str, default='adam', help='Optimizer. <adam|sgd>.')
parser.add_argument('--noise', type=float, default=0.0, help='Add noise to input training data to regularize against typos.')
parser.add_argument('--top_k', type=int, default=40, help='K for top-k sampling.')
parser.add_argument('--top_p', type=float, default=0.0, help='P for top-p sampling. Overrides top_k if set > 0.')
parser.add_argument('--restore_from', type=str, default='latest', help='Either "latest", "fresh", or a path to a checkpoint file')
parser.add_argument('--run_name', type=str, default='run1', help='Run id. Name of subdirectory in checkpoint/ and samples/')
parser.add_argument('--sample_every', metavar='N', type=int, default=100, help='Generate samples every N steps')
parser.add_argument('--sample_length', metavar='TOKENS', type=int, default=1023, help='Sample this many tokens')
parser.add_argument('--sample_num', metavar='N', type=int, default=1, help='Generate this many samples')
parser.add_argument('--save_every', metavar='N', type=int, default=1000, help='Write a checkpoint every N steps')
parser.add_argument('--val_dataset', metavar='PATH', type=str, default=None, help='Dataset for validation loss, defaults to --dataset.')
parser.add_argument('--val_batch_size', metavar='SIZE', type=int, default=2, help='Batch size for validation.')
parser.add_argument('--val_batch_count', metavar='N', type=int, default=40, help='Number of batches for validation.')
parser.add_argument('--val_every', metavar='STEPS', type=int, default=0, help='Calculate validation loss every STEPS steps.')
def maketree(path):
try:
os.makedirs(path)
except:
pass
def randomize(context, hparams, p):
if p > 0:
mask = tf.random.uniform(shape=tf.shape(context)) < p
noise = tf.random.uniform(shape=tf.shape(context), minval=0, maxval=hparams.n_vocab, dtype=tf.int32)
return tf.where(mask, noise, context)
else:
return context
def main():
args = parser.parse_args()
enc = encoder.get_encoder(args.model_name, models_dir=args.models_dir)
hparams = model.default_hparams()
with open(os.path.join('models', args.model_name, 'hparams.json')) as f:
hparams.override_from_dict(json.load(f))
if args.sample_length > hparams.n_ctx:
raise ValueError(
"Can't get samples longer than window size: %s" % hparams.n_ctx)
with tf.Session() as sess:
# Fully static shape required to make memory accounting in
# twremat accurate.
train_context = tf.placeholder(tf.int32, [args.batch_size, 1024])
train_context_in = randomize(train_context, hparams, args.noise)
train_output = model.model(hparams=hparams, X=train_context_in)
train_loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=train_context[:, 1:], logits=train_output['logits'][:, :-1]))
if args.val_every > 0:
val_context = tf.placeholder(tf.int32, [args.val_batch_size, None])
val_output = model.model(hparams=hparams, X=val_context)
val_loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=val_context[:, 1:], logits=val_output['logits'][:, :-1]))
val_loss_summary = tf.summary.scalar('val_loss', val_loss)
sample_context = tf.placeholder(tf.int32, [args.batch_size, None])
tf_sample = sample.sample_sequence(
hparams=hparams,
length=args.sample_length,
context=sample_context,
batch_size=args.batch_size,
temperature=1.0,
top_k=args.top_k,
top_p=args.top_p)
all_vars = [v for v in tf.trainable_variables() if 'model' in v.name]
train_vars = [v for v in all_vars if '/h' in v.name] if args.only_train_transformer_layers else all_vars
if args.optimizer == 'adam':
print('Using Adam optimizer', file=sys.stderr)
opt = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
elif args.optimizer == 'sgd':
print('Using SGD optimizer', file=sys.stderr)
opt = tf.train.GradientDescentOptimizer(learning_rate=args.learning_rate)
else:
exit('Bad optimizer:', args.optimizer)
if args.memory_saving_gradients:
if tf.VERSION >= '2':
exit('Memory saving gradients are not supported in tensorflow 2.x')
import memory_saving_gradients
opt_grads = memory_saving_gradients.gradients(train_loss, train_vars)
elif args.twremat:
import tfremat
opt_grads = tf.gradients(train_loss, train_vars)
(train_loss, opt_grads) = tfremat.tf_remat((train_loss, opt_grads), memlimit=args.twremat_memlimit)
else:
opt_grads = tf.gradients(train_loss, train_vars)
opt_grads = list(zip(opt_grads, train_vars))
opt_apply = opt.apply_gradients(opt_grads)
summary_loss = tf.summary.scalar('loss', train_loss)
# if args.twremat:
# import tfremat
# # Applying tfremat to opt_apply has more accurate
# # accounting but is a bit iffier since side effecting ops
# # have more restrictions for correctness. If in doubt
# # revert back to version using opt_grads above.
# (opt_apply, train_loss, summary_loss) = (
# tfremat.tf_remat((opt_apply, train_loss, summary_loss), memlimit=args.twremat_memlimit))
summary_lr = tf.summary.scalar('learning_rate', args.learning_rate)
summaries = tf.summary.merge([summary_lr, summary_loss])
summary_log = tf.summary.FileWriter(
os.path.join(CHECKPOINT_DIR, args.run_name))
saver = tf.train.Saver(
var_list=all_vars,
max_to_keep=5,
keep_checkpoint_every_n_hours=2)
sess.run(tf.global_variables_initializer())
if args.restore_from == 'latest':
ckpt = tf.train.latest_checkpoint(
os.path.join(CHECKPOINT_DIR, args.run_name))
if ckpt is None:
# Get fresh GPT weights if new run.
ckpt = tf.train.latest_checkpoint(
os.path.join('models', args.model_name))
elif args.restore_from == 'fresh':
ckpt = tf.train.latest_checkpoint(
os.path.join('models', args.model_name))
else:
ckpt = tf.train.latest_checkpoint(args.restore_from)
print('Loading checkpoint', ckpt)
saver.restore(sess, ckpt)
print('Loading dataset...')
chunks = load_dataset(enc, args.dataset, args.combine, encoding=args.encoding)
data_sampler = Sampler(chunks)
if args.val_every > 0:
if args.val_dataset:
val_chunks = load_dataset(enc, args.val_dataset, args.combine, encoding=args.encoding)
else:
val_chunks = chunks
print('dataset has', data_sampler.total_size, 'tokens')
print('Training...')
if args.val_every > 0:
# Sample from validation set once with fixed seed to make
# it deterministic during training as well as across runs.
val_data_sampler = Sampler(val_chunks, seed=1)
val_batches = [[val_data_sampler.sample(1024) for _ in range(args.val_batch_size)]
for _ in range(args.val_batch_count)]
counter = 1
counter_path = os.path.join(CHECKPOINT_DIR, args.run_name, 'counter')
if os.path.exists(counter_path):
# Load the step number if we're resuming a run
# Add 1 so we don't immediately try to save again
with open(counter_path, 'r') as fp:
counter = int(fp.read()) + 1
def save():
maketree(os.path.join(CHECKPOINT_DIR, args.run_name))
print(
'Saving',
os.path.join(CHECKPOINT_DIR, args.run_name,
'model-{}').format(counter))
saver.save(
sess,
os.path.join(CHECKPOINT_DIR, args.run_name, 'model'),
global_step=counter)
with open(counter_path, 'w') as fp:
fp.write(str(counter) + '\n')
def generate_samples():
print('Generating samples...')
context_tokens = data_sampler.sample(1)
all_text = []
index = 0
while index < args.sample_num:
out = sess.run(
tf_sample,
feed_dict={sample_context: args.batch_size * [context_tokens]})
for i in range(min(args.sample_num - index, args.batch_size)):
text = enc.decode(out[i])
text = '======== SAMPLE {} ========\n{}\n'.format(
index + 1, text)
all_text.append(text)
index += 1
print(text)
maketree(os.path.join(SAMPLE_DIR, args.run_name))
with open(
os.path.join(SAMPLE_DIR, args.run_name,
'samples-{}').format(counter), 'w', encoding=args.encoding) as fp:
fp.write('\n'.join(all_text))
def validation():
print('Calculating validation loss...')
losses = []
for batch in tqdm.tqdm(val_batches):
losses.append(sess.run(val_loss, feed_dict={val_context: batch}))
v_val_loss = np.mean(losses)
v_summary = sess.run(val_loss_summary, feed_dict={val_loss: v_val_loss})
summary_log.add_summary(v_summary, counter)
summary_log.flush()
print(
'[{counter} | {time:2.2f}] validation loss = {loss:2.2f}'
.format(
counter=counter,
time=time.time() - start_time,
loss=v_val_loss))
def sample_batch():
return [data_sampler.sample(1024) for _ in range(args.batch_size)]
avg_loss = (0.0, 0.0)
start_time = time.time()
# print('Evaluating grads..')
# tf2.profiler.experimental.start('logdir')
# sess.run((opt_apply, train_loss, summaries), feed_dict={train_context: sample_batch()})
# tf2.profiler.experimental.stop()
# print('Succeeded')
# exit()
try:
while True:
if counter % args.save_every == 0:
save()
if counter % args.sample_every == 0:
generate_samples()
if args.val_every > 0 and (counter % args.val_every == 0 or counter == 1):
validation()
(_, v_loss, v_summary) = sess.run(
(opt_apply, train_loss, summaries),
feed_dict={train_context: sample_batch()})
summary_log.add_summary(v_summary, counter)
avg_loss = (avg_loss[0] * 0.99 + v_loss,
avg_loss[1] * 0.99 + 1.0)
print(
'[{counter} | {time:2.2f}] loss={loss:2.2f} avg={avg:2.2f}'
.format(
counter=counter,
time=time.time() - start_time,
loss=v_loss,
avg=avg_loss[0] / avg_loss[1]))
counter += 1
except KeyboardInterrupt:
print('interrupted')
save()
if __name__ == '__main__':
main()