forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
582 lines (516 loc) · 22.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""tf.keras Models for NHNet."""
from absl import logging
import gin
import tensorflow as tf
from typing import Optional, Text
from official.modeling import tf_utils
from official.modeling.hyperparams import params_dict
from official.nlp.modeling import networks
from official.nlp.modeling.layers import multi_channel_attention
from official.nlp.nhnet import configs
from official.nlp.nhnet import decoder
from official.nlp.nhnet import utils
from official.nlp.modeling.ops import beam_search
def embedding_linear(embedding_matrix, x):
"""Uses embeddings as linear transformation weights."""
with tf.name_scope("presoftmax_linear"):
batch_size = tf.shape(x)[0]
length = tf.shape(x)[1]
hidden_size = tf.shape(x)[2]
vocab_size = tf.shape(embedding_matrix)[0]
x = tf.reshape(x, [-1, hidden_size])
logits = tf.matmul(x, embedding_matrix, transpose_b=True)
return tf.reshape(logits, [batch_size, length, vocab_size])
def _add_sos_to_seq(seq, start_token_id):
"""Add a start sequence token while keeping seq length."""
batch_size = tf.shape(seq)[0]
seq_len = tf.shape(seq)[1]
sos_ids = tf.ones([batch_size], tf.int32) * start_token_id
targets = tf.concat([tf.expand_dims(sos_ids, axis=1), seq], axis=1)
targets = targets[:, :-1]
tf.assert_equal(tf.shape(targets), (batch_size, seq_len))
return targets
def remove_sos_from_seq(seq, pad_token_id):
"""Remove the start sequence token while keeping seq length."""
batch_size, seq_len = tf_utils.get_shape_list(seq, expected_rank=2)
# remove <s>
targets = seq[:, 1:]
# pad
pad_ids = tf.ones([batch_size], tf.int32) * pad_token_id
targets = tf.concat([targets, tf.expand_dims(pad_ids, axis=1)], axis=1)
tf.assert_equal(tf.shape(targets), (batch_size, seq_len))
return targets
class Bert2Bert(tf.keras.Model):
"""Bert2Bert encoder decoder model for training."""
def __init__(self, params, bert_layer, decoder_layer, name=None):
super(Bert2Bert, self).__init__(name=name)
self.params = params
if not bert_layer.built:
raise ValueError("bert_layer should be built.")
if not decoder_layer.built:
raise ValueError("decoder_layer should be built.")
self.bert_layer = bert_layer
self.decoder_layer = decoder_layer
def get_config(self):
return {"params": self.params.as_dict()}
def get_decode_logits(self,
decoder_inputs,
ids,
decoder_self_attention_bias,
step,
cache=None):
if cache:
if self.params.get("padded_decode", False):
bias_shape = decoder_self_attention_bias.shape.as_list()
self_attention_bias = tf.slice(
decoder_self_attention_bias, [0, 0, step, 0],
[bias_shape[0], bias_shape[1], 1, bias_shape[3]])
else:
self_attention_bias = decoder_self_attention_bias[:, :, step:step +
1, :step + 1]
# Sets decoder input to the last generated IDs.
decoder_input = ids[:, -1:]
else:
self_attention_bias = decoder_self_attention_bias[:, :, :step + 1, :step +
1]
decoder_input = ids
decoder_inputs["target_ids"] = decoder_input
decoder_inputs["self_attention_bias"] = self_attention_bias
if cache:
decoder_outputs = self.decoder_layer(
decoder_inputs,
cache,
decode_loop_step=step,
padded_decode=self.params.get("padded_decode", False))
else:
decoder_outputs = self.decoder_layer(decoder_inputs)
logits = embedding_linear(self.decoder_layer.embedding_lookup.embeddings,
decoder_outputs[:, -1:, :])
logits = tf.squeeze(logits, axis=[1])
return logits
def _get_symbols_to_logits_fn(self, max_decode_length):
"""Returns a decoding function that calculates logits of the next tokens."""
# Max decode length should be smaller than the positional embedding max
# sequence length.
decoder_self_attention_bias = decoder.get_attention_bias(
input_tensor=None,
bias_type="decoder_self",
max_length=max_decode_length)
def _symbols_to_logits_fn(ids, i, cache):
"""Generate logits for next candidate IDs.
Args:
ids: Current decoded sequences. int tensor with shape [batch_size *
beam_size, i + 1]
i: Loop index
cache: dictionary of values storing the encoder output, encoder-decoder
attention bias, and previous decoder attention values.
Returns:
Tuple of
(logits with shape [batch_size * beam_size, vocab_size],
updated cache values)
"""
decoder_inputs = dict(
all_encoder_outputs=cache["all_encoder_outputs"],
attention_bias=cache["attention_bias"])
logits = self.get_decode_logits(
decoder_inputs,
ids,
decoder_self_attention_bias,
step=i,
cache=cache if self.params.use_cache else None)
return logits, cache
return _symbols_to_logits_fn
def train_decode(self, decode_outputs):
logits = embedding_linear(self.decoder_layer.embedding_lookup.embeddings,
decode_outputs)
decode_output_ids = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
output_log_probs = tf.nn.log_softmax(logits, axis=-1)
return logits, decode_output_ids, output_log_probs
def predict_decode(self, start_token_ids, cache):
symbols_to_logits_fn = self._get_symbols_to_logits_fn(self.params.len_title)
# Use beam search to find the top beam_size sequences and scores.
decoded_ids, scores = beam_search.sequence_beam_search(
symbols_to_logits_fn=symbols_to_logits_fn,
initial_ids=start_token_ids,
initial_cache=cache,
vocab_size=self.params.vocab_size,
beam_size=self.params.beam_size,
alpha=self.params.alpha,
max_decode_length=self.params.len_title,
padded_decode=self.params.get("padded_decode", False),
eos_id=self.params.end_token_id)
return decoded_ids, scores
def _get_logits_for_decode_ids(self, decoder_inputs, top_decoded_ids):
"""Returns the log probabilities for ids."""
target_ids = _add_sos_to_seq(top_decoded_ids, self.params.start_token_id)
decoder_inputs["self_attention_bias"] = decoder.get_attention_bias(
target_ids, bias_type="decoder_self")
decoder_inputs["target_ids"] = target_ids
decoder_outputs = self.decoder_layer(decoder_inputs)
logits = embedding_linear(self.decoder_layer.embedding_lookup.embeddings,
decoder_outputs)
return logits
def _init_cache(self, batch_size):
num_heads = self.params.num_decoder_attn_heads
dim_per_head = self.params.hidden_size // num_heads
init_decode_length = (
self.params.len_title if self.params.get("padded_decode", False) else 0)
cache = {}
for layer in range(self.params.num_decoder_layers):
cache[str(layer)] = {
"key":
tf.zeros(
[batch_size, init_decode_length, num_heads, dim_per_head],
dtype=tf.float32),
"value":
tf.zeros(
[batch_size, init_decode_length, num_heads, dim_per_head],
dtype=tf.float32)
}
return cache
def call(self, inputs, mode="train"):
"""Implements call().
Args:
inputs: a dictionary of tensors.
mode: string, an enum for mode, train/eval.
Returns:
logits, decode_output_ids, output_log_probs for training. top_decoded_ids
for eval.
"""
input_ids = inputs["input_ids"]
input_mask = inputs["input_mask"]
segment_ids = inputs["segment_ids"]
all_encoder_outputs, _ = self.bert_layer(
[input_ids, input_mask, segment_ids])
if mode not in ("train", "eval", "predict"):
raise ValueError("Invalid call mode: %s" % mode)
encoder_decoder_attention_bias = decoder.get_attention_bias(
input_ids,
bias_type="single_cross",
padding_value=self.params.pad_token_id)
if mode == "train":
self_attention_bias = decoder.get_attention_bias(
inputs["target_ids"], bias_type="decoder_self")
decoder_inputs = dict(
attention_bias=encoder_decoder_attention_bias,
all_encoder_outputs=all_encoder_outputs,
target_ids=inputs["target_ids"],
self_attention_bias=self_attention_bias)
decoder_outputs = self.decoder_layer(decoder_inputs)
return self.train_decode(decoder_outputs)
batch_size = tf.shape(input_ids)[0]
start_token_ids = tf.ones([batch_size],
tf.int32) * self.params.start_token_id
# Add encoder output and attention bias to the cache.
if self.params.use_cache:
cache = self._init_cache(batch_size)
else:
cache = {}
cache["all_encoder_outputs"] = all_encoder_outputs
cache["attention_bias"] = encoder_decoder_attention_bias
decoded_ids, scores = self.predict_decode(start_token_ids, cache)
if mode == "predict":
return decoded_ids[:, :self.params.beam_size,
1:], scores[:, :self.params.beam_size]
decoder_inputs = dict(
attention_bias=encoder_decoder_attention_bias,
all_encoder_outputs=all_encoder_outputs)
top_decoded_ids = decoded_ids[:, 0, 1:]
return self._get_logits_for_decode_ids(decoder_inputs, top_decoded_ids)
class NHNet(Bert2Bert):
"""NHNet model which performs multi-doc decoding."""
def __init__(self, params, bert_layer, decoder_layer, name=None):
super(NHNet, self).__init__(params, bert_layer, decoder_layer, name=name)
self.doc_attention = multi_channel_attention.VotingAttention(
num_heads=params.num_decoder_attn_heads,
head_size=params.hidden_size // params.num_decoder_attn_heads)
def _expand_doc_attention_probs(self, doc_attention_probs, target_length):
"""Expands doc attention probs to fit the decoding sequence length."""
doc_attention_probs = tf.expand_dims(
doc_attention_probs, axis=[1]) # [B, 1, A]
doc_attention_probs = tf.expand_dims(
doc_attention_probs, axis=[2]) # [B, 1, 1, A]
return tf.tile(doc_attention_probs,
[1, self.params.num_decoder_attn_heads, target_length, 1])
def _get_symbols_to_logits_fn(self, max_decode_length):
"""Returns a decoding function that calculates logits of the next tokens."""
# Max decode length should be smaller than the positional embedding max
# sequence length.
decoder_self_attention_bias = decoder.get_attention_bias(
input_tensor=None,
bias_type="decoder_self",
max_length=max_decode_length)
def _symbols_to_logits_fn(ids, i, cache):
"""Generate logits for next candidate IDs."""
if self.params.use_cache:
target_length = 1
else:
target_length = i + 1
decoder_inputs = dict(
doc_attention_probs=self._expand_doc_attention_probs(
cache["doc_attention_probs"], target_length),
all_encoder_outputs=cache["all_encoder_outputs"],
attention_bias=cache["attention_bias"])
logits = self.get_decode_logits(
decoder_inputs,
ids,
decoder_self_attention_bias,
step=i,
cache=cache if self.params.use_cache else None)
return logits, cache
return _symbols_to_logits_fn
def call(self, inputs, mode="training"):
input_shape = tf_utils.get_shape_list(inputs["input_ids"], expected_rank=3)
batch_size, num_docs, len_passage = (input_shape[0], input_shape[1],
input_shape[2])
input_ids = tf.reshape(inputs["input_ids"], [-1, len_passage])
input_mask = tf.reshape(inputs["input_mask"], [-1, len_passage])
segment_ids = tf.reshape(inputs["segment_ids"], [-1, len_passage])
all_encoder_outputs, _ = self.bert_layer(
[input_ids, input_mask, segment_ids])
encoder_outputs = tf.reshape(
all_encoder_outputs[-1],
[batch_size, num_docs, len_passage, self.params.hidden_size])
doc_attention_mask = tf.reshape(
tf.cast(
tf.math.count_nonzero(input_mask, axis=1, dtype=tf.int32) > 2,
tf.int32), [batch_size, num_docs])
doc_attention_probs = self.doc_attention(encoder_outputs,
doc_attention_mask)
encoder_decoder_attention_bias = decoder.get_attention_bias(
inputs["input_ids"],
bias_type="multi_cross",
padding_value=self.params.pad_token_id)
if mode == "train":
target_length = tf_utils.get_shape_list(
inputs["target_ids"], expected_rank=2)[1]
doc_attention_probs = self._expand_doc_attention_probs(
doc_attention_probs, target_length)
self_attention_bias = decoder.get_attention_bias(
inputs["target_ids"], bias_type="decoder_self")
decoder_inputs = dict(
attention_bias=encoder_decoder_attention_bias,
self_attention_bias=self_attention_bias,
target_ids=inputs["target_ids"],
all_encoder_outputs=encoder_outputs,
doc_attention_probs=doc_attention_probs)
decoder_outputs = self.decoder_layer(decoder_inputs)
return self.train_decode(decoder_outputs)
# Adds encoder output and attention bias to the cache.
if self.params.use_cache:
cache = self._init_cache(batch_size)
else:
cache = {}
cache["all_encoder_outputs"] = [encoder_outputs]
cache["attention_bias"] = encoder_decoder_attention_bias
cache["doc_attention_probs"] = doc_attention_probs
start_token_ids = tf.ones([batch_size],
tf.int32) * self.params.start_token_id
decoded_ids, scores = self.predict_decode(start_token_ids, cache)
if mode == "predict":
return decoded_ids[:, :self.params.beam_size,
1:], scores[:, :self.params.beam_size]
top_decoded_ids = decoded_ids[:, 0, 1:]
target_length = tf_utils.get_shape_list(top_decoded_ids)[-1]
decoder_inputs = dict(
attention_bias=encoder_decoder_attention_bias,
all_encoder_outputs=[encoder_outputs],
doc_attention_probs=self._expand_doc_attention_probs(
doc_attention_probs, target_length))
return self._get_logits_for_decode_ids(decoder_inputs, top_decoded_ids)
def get_bert2bert_layers(params: configs.BERT2BERTConfig):
"""Creates a Bert2Bert stem model and returns Bert encoder/decoder.
We use funtional-style to create stem model because we need to make all layers
built to restore variables in a customized way. The layers are called with
placeholder inputs to make them fully built.
Args:
params: ParamsDict.
Returns:
two keras Layers, bert_model_layer and decoder_layer
"""
input_ids = tf.keras.layers.Input(
shape=(None,), name="input_ids", dtype=tf.int32)
input_mask = tf.keras.layers.Input(
shape=(None,), name="input_mask", dtype=tf.int32)
segment_ids = tf.keras.layers.Input(
shape=(None,), name="segment_ids", dtype=tf.int32)
target_ids = tf.keras.layers.Input(
shape=(None,), name="target_ids", dtype=tf.int32)
bert_config = utils.get_bert_config_from_params(params)
bert_model_layer = networks.BertEncoder(
vocab_size=bert_config.vocab_size,
hidden_size=bert_config.hidden_size,
num_layers=bert_config.num_hidden_layers,
num_attention_heads=bert_config.num_attention_heads,
intermediate_size=bert_config.intermediate_size,
activation=tf_utils.get_activation(bert_config.hidden_act),
dropout_rate=bert_config.hidden_dropout_prob,
attention_dropout_rate=bert_config.attention_probs_dropout_prob,
max_sequence_length=bert_config.max_position_embeddings,
type_vocab_size=bert_config.type_vocab_size,
initializer=tf.keras.initializers.TruncatedNormal(
stddev=bert_config.initializer_range),
return_all_encoder_outputs=True,
name="bert_encoder")
all_encoder_outputs, _ = bert_model_layer(
[input_ids, input_mask, segment_ids])
# pylint: disable=protected-access
decoder_layer = decoder.Decoder(params, bert_model_layer._embedding_layer)
# pylint: enable=protected-access
cross_attention_bias = decoder.AttentionBias(bias_type="single_cross")(
input_ids)
self_attention_bias = decoder.AttentionBias(bias_type="decoder_self")(
target_ids)
decoder_inputs = dict(
attention_bias=cross_attention_bias,
self_attention_bias=self_attention_bias,
target_ids=target_ids,
all_encoder_outputs=all_encoder_outputs)
_ = decoder_layer(decoder_inputs)
return bert_model_layer, decoder_layer
def get_nhnet_layers(params: configs.NHNetConfig):
"""Creates a Mult-doc encoder/decoder.
Args:
params: ParamsDict.
Returns:
two keras Layers, bert_model_layer and decoder_layer
"""
input_ids = tf.keras.layers.Input(
shape=(None,), name="input_ids", dtype=tf.int32)
input_mask = tf.keras.layers.Input(
shape=(None,), name="input_mask", dtype=tf.int32)
segment_ids = tf.keras.layers.Input(
shape=(None,), name="segment_ids", dtype=tf.int32)
bert_config = utils.get_bert_config_from_params(params)
bert_model_layer = networks.BertEncoder(
vocab_size=bert_config.vocab_size,
hidden_size=bert_config.hidden_size,
num_layers=bert_config.num_hidden_layers,
num_attention_heads=bert_config.num_attention_heads,
intermediate_size=bert_config.intermediate_size,
activation=tf_utils.get_activation(bert_config.hidden_act),
dropout_rate=bert_config.hidden_dropout_prob,
attention_dropout_rate=bert_config.attention_probs_dropout_prob,
sequence_length=None,
max_sequence_length=bert_config.max_position_embeddings,
type_vocab_size=bert_config.type_vocab_size,
initializer=tf.keras.initializers.TruncatedNormal(
stddev=bert_config.initializer_range),
return_all_encoder_outputs=True,
name="bert_encoder")
bert_model_layer([input_ids, input_mask, segment_ids])
input_ids = tf.keras.layers.Input(
shape=(None, None), name="input_ids", dtype=tf.int32)
all_encoder_outputs = tf.keras.layers.Input((None, None, params.hidden_size),
dtype=tf.float32)
target_ids = tf.keras.layers.Input(
shape=(None,), name="target_ids", dtype=tf.int32)
doc_attention_probs = tf.keras.layers.Input(
(params.num_decoder_attn_heads, None, None), dtype=tf.float32)
# pylint: disable=protected-access
decoder_layer = decoder.Decoder(params, bert_model_layer._embedding_layer)
# pylint: enable=protected-access
cross_attention_bias = decoder.AttentionBias(bias_type="multi_cross")(
input_ids)
self_attention_bias = decoder.AttentionBias(bias_type="decoder_self")(
target_ids)
decoder_inputs = dict(
attention_bias=cross_attention_bias,
self_attention_bias=self_attention_bias,
target_ids=target_ids,
all_encoder_outputs=all_encoder_outputs,
doc_attention_probs=doc_attention_probs)
_ = decoder_layer(decoder_inputs)
return bert_model_layer, decoder_layer
def create_transformer_model(params,
init_checkpoint: Optional[Text] = None
) -> tf.keras.Model:
"""A helper to create Transformer model."""
bert_layer, decoder_layer = get_bert2bert_layers(params=params)
model = Bert2Bert(
params=params,
bert_layer=bert_layer,
decoder_layer=decoder_layer,
name="transformer")
if init_checkpoint:
logging.info(
"Checkpoint file %s found and restoring from "
"initial checkpoint.", init_checkpoint)
ckpt = tf.train.Checkpoint(model=model)
ckpt.restore(init_checkpoint).expect_partial()
return model
def create_bert2bert_model(
params: configs.BERT2BERTConfig,
cls=Bert2Bert,
init_checkpoint: Optional[Text] = None) -> tf.keras.Model:
"""A helper to create Bert2Bert model."""
bert_layer, decoder_layer = get_bert2bert_layers(params=params)
if init_checkpoint:
utils.initialize_bert2bert_from_pretrained_bert(bert_layer, decoder_layer,
init_checkpoint)
return cls(
params=params,
bert_layer=bert_layer,
decoder_layer=decoder_layer,
name="bert2bert")
def create_nhnet_model(
params: configs.NHNetConfig,
cls=NHNet,
init_checkpoint: Optional[Text] = None) -> tf.keras.Model:
"""A helper to create NHNet model."""
bert_layer, decoder_layer = get_nhnet_layers(params=params)
model = cls(
params=params,
bert_layer=bert_layer,
decoder_layer=decoder_layer,
name="nhnet")
if init_checkpoint:
logging.info(
"Checkpoint file %s found and restoring from "
"initial checkpoint.", init_checkpoint)
if params.init_from_bert2bert:
ckpt = tf.train.Checkpoint(model=model)
ckpt.restore(init_checkpoint).assert_existing_objects_matched()
else:
utils.initialize_bert2bert_from_pretrained_bert(bert_layer, decoder_layer,
init_checkpoint)
return model
@gin.configurable
def get_model_params(model: Optional[Text] = "bert2bert",
config_class=None) -> params_dict.ParamsDict:
"""Helper function to convert config file to ParamsDict."""
if model == "bert2bert":
return configs.BERT2BERTConfig()
elif model == "nhnet":
return configs.NHNetConfig()
elif config_class:
return config_class()
else:
raise KeyError("The model type is not defined: %s" % model)
@gin.configurable
def create_model(model_type: Text,
params,
init_checkpoint: Optional[Text] = None):
"""A factory function to create different types of models."""
if model_type == "bert2bert":
return create_bert2bert_model(params, init_checkpoint=init_checkpoint)
elif model_type == "nhnet":
return create_nhnet_model(params, init_checkpoint=init_checkpoint)
elif "transformer" in model_type:
return create_transformer_model(params, init_checkpoint=init_checkpoint)
else:
raise KeyError("The model type is not defined: %s" % model_type)