forked from nikhilmaram/Show_and_Tell
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
70 lines (61 loc) · 2.52 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
class Config(object):
""" Wrapper class for various (hyper)parameters. """
def __init__(self):
# about the model architecture
self.cnn = 'vgg16' # 'vgg16' or 'resnet50'
self.max_caption_length = 20
self.dim_embedding = 512
self.num_lstm_units = 512
self.num_initalize_layers = 1 ## Changed from 2 to 1 # 1 or 2
self.dim_initalize_layer = 512
self.num_attend_layers = 2 # 1 or 2
self.dim_attend_layer = 512
self.num_decode_layers = 1 ## Changed from 2 to 1 # 1 or 2
self.dim_decode_layer = 1024
# about the weight initialization and regularization
self.fc_kernel_initializer_scale = 0.08
self.fc_kernel_regularizer_scale = 1e-4
self.fc_activity_regularizer_scale = 0.0
self.conv_kernel_regularizer_scale = 1e-4
self.conv_activity_regularizer_scale = 0.0
self.fc_drop_rate = 0.5
self.lstm_drop_rate = 0.3
self.attention_loss_factor = 0.01
# about the optimization
self.num_epochs = 100
self.batch_size = 32
self.optimizer = 'Adam' # 'Adam', 'RMSProp', 'Momentum' or 'SGD'
self.initial_learning_rate = 0.0001
self.learning_rate_decay_factor = 1.0
self.num_steps_per_decay = 100000
self.clip_gradients = 5.0
self.momentum = 0.0
self.use_nesterov = True
self.decay = 0.9
self.centered = True
self.beta1 = 0.9
self.beta2 = 0.999
self.epsilon = 1e-6
# about the saver
self.save_period = 1000
self.save_dir = './models/'
self.summary_dir = './summary/'
# about the vocabulary
self.vocabulary_file = './vocabulary.csv'
self.vocabulary_size = 5000
# about the training
self.train_image_dir = './train/images/'
self.train_caption_file = './train/captions_train2014.json'
self.temp_annotation_file = './train/anns.csv'
self.temp_data_file = './train/data.npy'
# about the evaluation
self.eval_image_dir = './val/images/'
self.eval_caption_file = './val/captions_val2014.json'
self.eval_result_dir = './val/results/'
self.eval_result_file = './val/results.json'
self.save_eval_result_as_image = False
# about the testing
self.test_image_dir = './test/images/'
self.test_result_dir = './test/results/'
self.test_result_file = './test/results.csv'
self.trainable_variable = False