-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathTADPOLE_D2.py
executable file
·402 lines (347 loc) · 20.3 KB
/
TADPOLE_D2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#!/usr/bin/env python
# encoding: utf-8
"""
TADPOLE_D2.py
A script to generate the D2 dataset for TADPOLE Challenge:
The Alzheimer's Disease Prediction Of Longitudinal Evolution Challenge
http://tadpole.grand-challenge.org
Called by TADPOLE_D1.py
Created by Neil P. Oxtoby in June 2017.
Copyright (c) 2017 Neil P. Oxtoby. All rights reserved.
http://neiloxtoby.com
"""
import os
import numpy as np
from datetime import datetime
import pandas as pd
import argparse
from argparse import RawTextHelpFormatter
parser = argparse.ArgumentParser(
description=r'''
A script to generate the D2 dataset for TADPOLE Challenge:
The Alzheimer's Disease Prediction Of Longitudinal Evolution Challenge
http://tadpole.grand-challenge.org
Called by TADPOLE_D1.py
The script requires the following spreadsheets to be in the current folder:
REGISTRY.csv
ROSTER.csv
ARM.csv
DXSUM_PDXCONV_ADNIALL.csv
ADNIMERGE.csv
''', formatter_class=RawTextHelpFormatter
)
parser.add_argument('--spreadsheetFolder', dest='spreadsheetFolder', default='.',
help='folder of output spreadsheets')
np.random.seed(1)
args = parser.parse_args()
def generateDXCHANGE(ADNI_DXSUM_table):
"Generate DXCHANGE for ADNI1 within DXSUM table: As defined on page 46 of ADNI_data_training_slides_part2.pdf"
# Identify ADNI1 Phase and make temporary data frame
idx_ADNI1 = np.where(ADNI_DXSUM_table.Phase.values=='ADNI1')[0]
DXSUM_table_ADNI1_temp = ADNI_DXSUM_table.iloc[idx_ADNI1]
# Initialise DXCHANGE as NaN
DXCHANGE_ADNI1 = np.array([np.nan for k in range(0,DXSUM_table_ADNI1_temp.shape[0])])
# Extract relevant DX variables as arrays
DXCONV = DXSUM_table_ADNI1_temp.DXCONV.values
DXCURREN = DXSUM_table_ADNI1_temp.DXCURREN.values
DXCONTYP = DXSUM_table_ADNI1_temp.DXCONTYP.values
DXREV = DXSUM_table_ADNI1_temp.DXREV.values
# DXCHANGE definitions
DXCHANGE_1 = np.logical_and(DXCONV==0,DXCURREN==1)
DXCHANGE_2 = np.logical_and(DXCONV==0,DXCURREN==2)
DXCHANGE_3 = np.logical_and(DXCONV==0,DXCURREN==3)
DXCHANGE_4 = np.logical_and(DXCONV==1,DXCONTYP==1)
DXCHANGE_5 = np.logical_and(DXCONV==1,DXCONTYP==3)
DXCHANGE_6 = np.logical_and(DXCONV==1,DXCONTYP==2)
DXCHANGE_7 = np.logical_and(DXCONV==2,DXREV==1)
DXCHANGE_8 = np.logical_and(DXCONV==2,DXREV==2)
DXCHANGE_9 = np.logical_and(DXCONV==2,DXREV==3)
# Assign appropriate DXCHANGE values
DXCHANGE_ADNI1[DXCHANGE_1] = np.array([1 for k in range(0,sum(DXCHANGE_1))])
DXCHANGE_ADNI1[DXCHANGE_2] = np.array([2 for k in range(0,sum(DXCHANGE_2))])
DXCHANGE_ADNI1[DXCHANGE_3] = np.array([3 for k in range(0,sum(DXCHANGE_3))])
DXCHANGE_ADNI1[DXCHANGE_4] = np.array([4 for k in range(0,sum(DXCHANGE_4))])
DXCHANGE_ADNI1[DXCHANGE_5] = np.array([5 for k in range(0,sum(DXCHANGE_5))])
DXCHANGE_ADNI1[DXCHANGE_6] = np.array([6 for k in range(0,sum(DXCHANGE_6))])
DXCHANGE_ADNI1[DXCHANGE_7] = np.array([7 for k in range(0,sum(DXCHANGE_7))])
DXCHANGE_ADNI1[DXCHANGE_8] = np.array([8 for k in range(0,sum(DXCHANGE_8))])
DXCHANGE_ADNI1[DXCHANGE_9] = np.array([9 for k in range(0,sum(DXCHANGE_9))])
# Insert values into original DXSUM table
ADNI_DXSUM_table.loc[idx_ADNI1,'DXCHANGE'] = DXCHANGE_ADNI1
return ADNI_DXSUM_table
def mergeDX_ARM(DXSUM,ARM):
"Merge (outer join) DXSUM and ARM using Phase and RID: As defined on page 49 of ADNI_data_training_slides_part2.pdf"
# Variables to keep
DXSUM_columns = ['RID', 'Phase', 'VISCODE', 'VISCODE2', 'DXCHANGE']
ARM_columns = ['RID', 'Phase', 'ARM', 'ENROLLED']
# Perform the join
KEYS = ['RID','Phase']
DXARM = DXSUM[DXSUM_columns].merge(ARM[ARM_columns], how='inner', on=KEYS)
return DXARM
def assignBaselineDX(DXARM):
# Page 53 - Use baseline DXCHANGE and ARM to assign baselineDX variable.
# Temporary data frame: baseline visit, enrolled==[1,2,3]
idx_bl_enrolled = np.where(np.logical_and(DXARM.VISCODE2.values=='bl',ismember(DXARM.ENROLLED.values,[1,2,3])))[0]
DXARM_bl = DXARM.iloc[idx_bl_enrolled]
DXARM_bl = DXARM_bl[['RID','DXCHANGE','ARM']]
# Define baselineDX as per ADNI training slides
# Initialise as NaN
baselineDX = np.array([np.nan for k in range(0,DXARM_bl.shape[0])])
# Extract relevant variables as arrays
DXCHANGE = DXARM_bl.DXCHANGE.values
DXCHANGE_179 = ismember(DXCHANGE,[1,7,9])
DXCHANGE_248 = ismember(DXCHANGE,[2,4,8])
DXCHANGE_356 = ismember(DXCHANGE,[3,5,6])
DXARM_bl_ARM = DXARM_bl.ARM.values
DXARM_bl_11 = DXARM_bl_ARM==11
DXARM_bl_10 = DXARM_bl_ARM==10
baselineDX_1 = np.logical_and(DXCHANGE_179==True,DXARM_bl_11==False)
baselineDX_2 = np.logical_and(DXCHANGE_179==True,DXARM_bl_11==True)
baselineDX_3 = np.logical_and(DXCHANGE_248==True,DXARM_bl_10==True)
baselineDX_4 = np.logical_and(DXCHANGE_248==True,DXARM_bl_10==False)
baselineDX_5 = DXCHANGE_356==True
# Assign values by index
baselineDX[baselineDX_1] = np.array([1 for k in range(0,sum(baselineDX_1))])
baselineDX[baselineDX_2] = np.array([2 for k in range(0,sum(baselineDX_2))])
baselineDX[baselineDX_3] = np.array([3 for k in range(0,sum(baselineDX_3))])
baselineDX[baselineDX_4] = np.array([4 for k in range(0,sum(baselineDX_4))])
baselineDX[baselineDX_5] = np.array([5 for k in range(0,sum(baselineDX_5))])
# Insert values into table
DXARM_bl.loc[idx_bl_enrolled,'baselineDX'] = baselineDX
# Remove unwanted columns
DXARM_bl = DXARM_bl[['RID','baselineDX']]
# Add baselineDX to DXARM: join DXARM with DXARM_bl
# Variables to keep (must include the keys)
DXARM_columns = ['RID','Phase','VISCODE','VISCODE2','DXCHANGE','ARM','ENROLLED']
DXARM_bl_columns = ['RID','baselineDX']
# Perform the join
KEYS = ['RID']
DXARM = DXARM[DXARM_columns].merge(DXARM_bl[DXARM_bl_columns], how='left', on=KEYS)
return DXARM
def ismember(A,B):
"ismember(A,B): Recursive form of np.logical_or to test if A is in B"
# First comparison
C = A==B[0]
if len(B)>1:
for k in range(1,len(B)):
C = np.logical_or(C,A==B[k])
return C
def representsInt(s):
try:
int(s)
return True
except ValueError:
return False
def activeAtMostRecentVisit(REGISTRY_table):
"""
Identifies most recent visit per participant, per Phase
"""
#*** Identify most recent active visit for each participant, in each ADNI Phase
ActiveVisits_ADNIGO2 = (REGISTRY_table['PTSTATUS'] == 1).values
VisitConducted_ADNI1 = (REGISTRY_table['RGCONDCT'] == 1).values
ADNI1 = np.logical_and((REGISTRY_table['Phase'] == 'ADNI1').values, (REGISTRY_table['RGCONDCT'] == 1).values)
ADNIGO = np.logical_and((REGISTRY_table['Phase'] == 'ADNIGO').values,(REGISTRY_table['RGSTATUS'] == 1).values)
ADNI2 = np.logical_and((REGISTRY_table['Phase'] == 'ADNI2').values, (REGISTRY_table['RGSTATUS'] == 1).values)
#* Identify most recent visit using largest Month (from VISCODE2)
month = REGISTRY_table['VISCODE2'].str.replace('scmri','0').str.replace('m','').str.replace('bl','0').str.replace('sc','0')
Month = np.array([int(m) if type(m)==str and m!='f' and m!='uns1' else None for m in month])
MonthIsNone = np.array([m is None for m in Month]) # Used to avoid errors in the for-loop below
RID = REGISTRY_table.RID.values
PTSTATUS = REGISTRY_table.PTSTATUS
RID_u = np.unique(RID)
MostRecentVisit_ADNI1 = np.zeros((REGISTRY_table.shape[0],1))
MostRecentVisit_ADNIGO = np.zeros((REGISTRY_table.shape[0],1))
MostRecentVisit_ADNI2 = np.zeros((REGISTRY_table.shape[0],1))
InactiveAtAnyVisit = np.zeros((REGISTRY_table.shape[0],1))
for ki in range(0,len(RID_u)):
# All visits for this participant
rowz = RID==RID_u[ki]
#* Separate by ADNI Phase
rowz_ADNI1 = rowz & ADNI1
rowz_ADNIGO = rowz & ADNIGO
rowz_ADNI2 = rowz & ADNI2
visitz_ADNI1 = Month[rowz_ADNI1]
ptstatusz_ADNI1 = PTSTATUS[rowz_ADNI1]
if not all(MonthIsNone[rowz_ADNI1]):
mostRecentVisit_ADNI1 = visitz_ADNI1==max(visitz_ADNI1)
rowz_ADNI1 = np.where(rowz_ADNI1)[0]
MostRecentVisit_ADNI1[rowz_ADNI1[mostRecentVisit_ADNI1]] = 1
visitz_ADNIGO = Month[rowz_ADNIGO]
ptstatusz_ADNIGO = PTSTATUS[rowz_ADNIGO]
if not all(MonthIsNone[rowz_ADNIGO]):
mostRecentVisit_ADNIGO = visitz_ADNIGO==max(visitz_ADNIGO)
rowz_ADNIGO = np.where(rowz_ADNIGO)[0]
MostRecentVisit_ADNIGO[rowz_ADNIGO[mostRecentVisit_ADNIGO]] = 1
visitz_ADNI2 = Month[rowz_ADNI2]
ptstatusz_ADNI2 = PTSTATUS[rowz_ADNI2]
if not all(MonthIsNone[rowz_ADNI2]):
mostRecentVisit_ADNI2 = visitz_ADNI2==max(visitz_ADNI2)
rowz_ADNI2 = np.where(rowz_ADNI2)[0]
MostRecentVisit_ADNI2[rowz_ADNI2[mostRecentVisit_ADNI2]] = 1
ptstatusz = PTSTATUS[rowz]
if any(ptstatusz_ADNI1==2) or any(ptstatusz_ADNIGO==2) or any(ptstatusz_ADNI2==2):
InactiveAtAnyVisit[rowz] = 1
#* Identify those who are active at their final visit
ActiveAtMostRecentVisit_ADNI1 = np.logical_and( MostRecentVisit_ADNI1.flatten() ,VisitConducted_ADNI1 )
ActiveAtMostRecentVisit_ADNI1 = np.logical_and(ActiveAtMostRecentVisit_ADNI1, np.logical_not(InactiveAtAnyVisit.flatten()==1) )
ActiveAtMostRecentVisit_ADNIGO = np.logical_and( MostRecentVisit_ADNIGO.flatten(),ActiveVisits_ADNIGO2 ) , np.logical_not(InactiveAtAnyVisit.flatten()==1) )
ActiveAtMostRecentVisit_ADNI2 = np.logical_and( np.logical_and( MostRecentVisit_ADNI2.flatten() ,ActiveVisits_ADNIGO2 ) , np.logical_not(InactiveAtAnyVisit.flatten()==1) )
return ( ActiveAtMostRecentVisit_ADNI1, ActiveAtMostRecentVisit_ADNIGO, ActiveAtMostRecentVisit_ADNI2 )
#********************************************************************#
if __name__ == '__main__':
# runDate = datetime.now().strftime("%Y%m%d")
dataSaveLocation = os.getcwd()
dataLocation = os.getcwd()
#*** Active, passed screening, etc.
REGISTRY_file = os.path.join(args_spreadsheetFolder,'REGISTRY.csv')
#*** specifics on EMCI/LMCI/etc
ARM_file = os.path.join(args_spreadsheetFolder,'ARM.csv')
DXSUM_file = os.path.join(args_spreadsheetFolder,'DXSUM_PDXCONV_ADNIALL.csv')
#*** ADNI tables
REGISTRY_table = pd.read_csv(REGISTRY_file)
ARM_table = pd.read_csv(ARM_file)
DXSUM_table = pd.read_csv(DXSUM_file)
#*** ADNI preliminaries from training slides part 2 PDF document
DXSUM_table = generateDXCHANGE(DXSUM_table)
DXARM_table = mergeDX_ARM(DXSUM_table,ARM_table)
DXARM_table = assignBaselineDX(DXARM_table)
DXARMREG_table = pd.merge(DXARM_table[['RID','Phase','VISCODE','VISCODE2','DXCHANGE','ARM','ENROLLED','baselineDX']],REGISTRY_table[['RID','Phase','VISCODE','EXAMDATE','PTSTATUS','RGCONDCT','RGSTATUS','VISTYPE']],'left',on=['RID','Phase','VISCODE'])
#*** Identify most recent visit per participant, per Phase
(ActiveAtMostRecentVisit_ADNI1,ActiveAtMostRecentVisit_ADNIGO,ActiveAtMostRecentVisit_ADNI2) = activeAtMostRecentVisit(REGISTRY_table)
RID_ActiveAtMostRecentVisit_ADNI1 = REGISTRY_table.RID[ActiveAtMostRecentVisit_ADNI1]
RID_ActiveAtMostRecentVisit_ADNIGO = REGISTRY_table.RID[ActiveAtMostRecentVisit_ADNIGO]
RID_ActiveAtMostRecentVisit_ADNI2 = REGISTRY_table.RID[ActiveAtMostRecentVisit_ADNI2]
print('--- Active status at final visit (ADNI1: RGCONDUCT==1; ADNIGO/2: PTSTATUS==1, and never inactive)')
print('--- Found {0} ADNI1 participants\n--- {1} ADNIGO participants\n--- {2} ADNI2 participants\n'.format(len(RID_ActiveAtMostRecentVisit_ADNI1),len(RID_ActiveAtMostRecentVisit_ADNIGO),len(RID_ActiveAtMostRecentVisit_ADNI2)))
#*** Report numbers by diagnosis
BaselineDX_ADNI1 = DXARMREG_table[['RID','baselineDX']][np.logical_and(ismember(DXARMREG_table.RID,RID_ActiveAtMostRecentVisit_ADNI1.values) , DXARMREG_table.Phase=='ADNI1')]
BaselineDX_ADNIGO = DXARMREG_table[['RID','baselineDX']][np.logical_and(ismember(DXARMREG_table.RID,RID_ActiveAtMostRecentVisit_ADNIGO.values), DXARMREG_table.Phase=='ADNIGO')]
BaselineDX_ADNI2 = DXARMREG_table[['RID','baselineDX']][np.logical_and(ismember(DXARMREG_table.RID,RID_ActiveAtMostRecentVisit_ADNI2.values) , DXARMREG_table.Phase=='ADNI2')]
# Unique RIDs
BaselineDX_ADNI1_u = pd.DataFrame.drop_duplicates(BaselineDX_ADNI1)
BaselineDX_ADNIGO_u = pd.DataFrame.drop_duplicates(BaselineDX_ADNIGO)
BaselineDX_ADNI2_u = pd.DataFrame.drop_duplicates(BaselineDX_ADNI2)
print('\n\n - - - Identifying active participants in each Phase of ADNI - - - \n')
print(' - - - ADNI1 ({0}) - - - \n'.format(len(BaselineDX_ADNI1_u)))
print('Baseline DX:\n CN = {0}\n SMC = {1}\n EMCI = {2}\n LMCI = {3}\n AD = {4}\n'.format(sum(BaselineDX_ADNI1_u.baselineDX==1),sum(BaselineDX_ADNI1_u.baselineDX==2),sum(BaselineDX_ADNI1_u.baselineDX==3),sum(BaselineDX_ADNI1_u.baselineDX==4),sum(BaselineDX_ADNI1_u.baselineDX==5)))
print(' - - - ADNIGO ({0}) - - - \n'.format(len(BaselineDX_ADNIGO_u)))
print('Baseline DX:\n CN = {0}\n SMC = {1}\n EMCI = {2}\n LMCI = {3}\n AD = {4}\n'.format(sum(BaselineDX_ADNIGO_u.baselineDX==1),sum(BaselineDX_ADNIGO_u.baselineDX==2),sum(BaselineDX_ADNIGO_u.baselineDX==3),sum(BaselineDX_ADNIGO_u.baselineDX==4),sum(BaselineDX_ADNIGO_u.baselineDX==5)))
print(' - - - ADNI2 ({0}) - - - \n'.format(len(BaselineDX_ADNI2_u)))
print('Baseline DX:\n CN = {0}\n SMC = {1}\n EMCI = {2}\n LMCI = {3}\n AD = {4}\n'.format(sum(BaselineDX_ADNI2_u.baselineDX==1),sum(BaselineDX_ADNI2_u.baselineDX==2),sum(BaselineDX_ADNI2_u.baselineDX==3),sum(BaselineDX_ADNI2_u.baselineDX==4),sum(BaselineDX_ADNI2_u.baselineDX==5)))
### Below needs to be updated for identifying D2 and D3 rows.
### Here's my MATLAB code:
# %% Identify D2: all historical ADNIMERGE rows for "prospective rollovers" from ADNI2 into ADNI3
# D2_RID = BaselineDX_ADNI2_u.RID;
# table_D2_columns = table_ADNIMERGE(:,{'RID','VISCODE'});
# table_D2_columns.D2 = 1*ismember(table_ADNIMERGE.RID,D2_RID);
#
# %% Identify D3: final visit
# table_D2_D3_columns = table_D2_columns;
# table_D2_D3_columns.M = str2double(strrep(strrep(table_D2_D3_columns.VISCODE,'bl','0'),'m',''));
# % [table_D3_columns_sorted,I] = sortrows(table_D3_columns,{'RID','M'});
# %* Identify most recent visit
# RID = str2double(table_D2_D3_columns.RID);
# RID_u = unique(RID);
# MostRecentVisit = zeros(size(table_D2_D3_columns,1),1);
# for ki=1:length(RID_u)
# rowz = RID==RID_u(ki);
# %* Most recent visit
# visitz = table_D2_D3_columns.M(rowz);
# mostRecentVisit = visitz==max(visitz);
# rowz = find(rowz);
# MostRecentVisit(rowz(mostRecentVisit)) = 1;
# end
# table_D2_D3_columns.D3 = 1*(MostRecentVisit==1 & table_D2_D3_columns.D2);
# table_D2_D3_columns.M = [];
#
# writetable(table_D2_D3_columns,fullfile(dataSaveLocation,sprintf('TADPOLE_D2_D3_columns_MATLAB_%s.csv',runDate)))
#
#*** Select ADNI2 participants
REGISTRY_ADNI2_bool = (REGISTRY_table['Phase']=='ADNI2') #& (REGISTRY_table['RGSTATUS'] == 1)
REGISTRY_table_ADNI2 = REGISTRY_table.iloc[REGISTRY_ADNI2_bool.values]
#*** Merge tables to find potential ADNI3 rollovers
#* Join DXARM to REGISTRY
DXARMREG_table = REGISTRY_table_ADNI2.merge(DXARM_table,'left',['RID','Phase','VISCODE'])
#* Remove missing values (shouldn't be any)
# DXCHANGE_notmissing = ~np.isnan(DXARMREG_table['DXCHANGE']).values
# print(DXARMREG_table[['Phase', 'ID', 'RID', 'VISCODE', 'USERDATE', 'PTSTATUS', 'RGSTATUS',
# 'EXAMDATE', 'DXCHANGE']][DXARMREG_table.RID == 107])
# DXARMREG_table = DXARMREG_table.iloc[DXCHANGE_notmissing]
#* ADNI2 and active
uniqueRIDs = DXARMREG_table.RID.unique()
nrUnqRIDs = uniqueRIDs.shape[0]
# lastVisitMask = np.zeros(DXARMREG_table.shape[0], bool)
hasAtLeastOnePtstatusEq1 = np.zeros(DXARMREG_table.shape[0], bool)
# print(REGISTRY_table_ADNI2[['Phase', 'ID', 'RID', 'VISCODE', 'USERDATE', 'PTSTATUS', 'RGSTATUS',
# 'EXAMDATE']][REGISTRY_table_ADNI2.RID == 107])
# print(DXARMREG_table[['Phase', 'ID', 'RID', 'VISCODE', 'USERDATE', 'PTSTATUS', 'RGSTATUS',
# 'EXAMDATE']][DXARMREG_table.RID == 107])
# print(adsa)
# notRollovers = np.array([ 107, 160, 479, 922, 1116, 1318, 2026, 2210, 4010, 4022, 4406, 4729, 4827,
# 4906, 5162, 5235])
hasNoPtstatusEq2 = np.zeros(DXARMREG_table.shape[0], bool)
for r in range(nrUnqRIDs):
currPartMask = DXARMREG_table['RID'] == uniqueRIDs[r]
hasAtLeastOnePtstatusEq1[currPartMask] = (DXARMREG_table.PTSTATUS[currPartMask] == 1).any()
hasNoPtstatusEq2[currPartMask] = not ((DXARMREG_table.PTSTATUS[currPartMask] == 2).any())
# indexInDXARMREG_table = np.where(currPartMask)[0][-1]
# lastVisitMask[indexInDXARMREG_table] = 1
# if uniqueRIDs[r] in notRollovers:
# print('check not Rollovers', uniqueRIDs[r], (DXARMREG_table.PTSTATUS[currPartMask] == 1).any(), not ((DXARMREG_table.PTSTATUS[currPartMask] == 2).any()))
# print('DXARMREG_table.PTSTATUS[currPartMask]', DXARMREG_table.PTSTATUS[currPartMask])
table_ADNI2_active = DXARMREG_table.iloc[((DXARMREG_table.Phase=='ADNI2') & hasAtLeastOnePtstatusEq1 & hasNoPtstatusEq2).values]
# print('hasAtLeastOnePtstatusEq1', np.sum(hasAtLeastOnePtstatusEq1))
# print('hasNoPtstatusEq2', np.sum(hasNoPtstatusEq2))
# print('table_ADNI2_active', table_ADNI2_active)
# print(adsa)
D2_RID = table_ADNI2_active.RID.unique()
# print('table_ADNI2_active.columns', table_ADNI2_active.columns)
# print('notRollover flags', np.in1d(notRollovers, D2_RID))
# print('# in D2', D2_RID.shape[0])
#*** TADPOLE D2: historical data for D2_RID
D1_file = '%s/ADNIMERGE.csv' % args_spreadsheetFolder
D1_table = pd.read_csv(D1_file)
D2_indicator = ismember(D1_table.RID.values,D2_RID)
D2_indicator_numeric = 1*D2_indicator
D2_ = D1_table[['RID','VISCODE']]
D2 = D2_.assign(D2=D2_indicator_numeric)
D2_file = '%s/TADPOLE_D2_column.csv' % args_spreadsheetFolder # D2_file = 'TADPOLE_D2_column_{0}.csv'.format(runDate)
D2.to_csv(os.path.join(dataSaveLocation,D2_file),index=False)
performCheck = True
if performCheck:
print('----- missing from neil, existing in raz --------')
neilD2D3matlab = pd.read_csv(os.path.join(os.getcwd(),'TADPOLE_D2_D3_columns_MATLAB_20170707.csv'))
d2RidUnqNeil = neilD2D3matlab.RID[neilD2D3matlab['D2'] == 1].unique()
d2RidUnqRaz = D2['RID'][D2['D2'] == 1].unique()
print('neilUnqRIDs', d2RidUnqNeil)
print('raz UnqRIDs', d2RidUnqRaz)
print('raz shape', d2RidUnqRaz.shape[0])
print('neil shape', d2RidUnqNeil.shape[0])
for r in range(d2RidUnqRaz.shape[0]):
pass
if np.sum(d2RidUnqRaz[r] == neilD2D3matlab['RID']) == 0:
print('RID not found in neil\n', table_ADNI2_active[['Phase', 'ID', 'RID', 'VISCODE','VISCODE2_x','VISCODE2_y',
'USERDATE',
'PTSTATUS', 'RGSTATUS',
'EXAMDATE']][table_ADNI2_active.RID == d2RidUnqRaz[r]])
print('----- missing from raz, existing in neil --------')
print('raz shape', d2RidUnqRaz.shape[0])
print('neil shape', d2RidUnqNeil.shape[0])
for r in range(d2RidUnqNeil.shape[0]):
pass
if np.sum(d2RidUnqRaz == d2RidUnqNeil[r]) == 0:
print('RID not found in raz\n', neilD2D3matlab[
['RID', 'VISCODE', 'D2', 'D3']][neilD2D3matlab.RID == d2RidUnqNeil[r]])
print('', DXARMREG_table[['Phase', 'ID', 'RID', 'VISCODE','VISCODE2_x','VISCODE2_y',
'USERDATE',
'PTSTATUS', 'RGSTATUS',
'EXAMDATE']][DXARMREG_table.RID == d2RidUnqNeil[r]])
# print('np.in1d(d2RidUnqRaz, d2RidUnqNeil)', np.in1d(d2RidUnqRaz, d2RidUnqNeil))
ridRazNotInNeil = d2RidUnqRaz[~np.in1d(d2RidUnqRaz, d2RidUnqNeil)]
neilNotInRaz = d2RidUnqNeil[~np.in1d(d2RidUnqNeil, d2RidUnqRaz)]
print('raz shape', d2RidUnqRaz.shape[0])
print('neil shape', d2RidUnqNeil.shape[0])
print('d2RidUnqRaz.dtype',d2RidUnqRaz.dtype)
print('d2RidUnqNeil.dtype', d2RidUnqNeil.dtype)
print('ridRazNotInNeil', ridRazNotInNeil)
print('neilNotInRaz', neilNotInRaz)