-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathframework_benchmark.py
83 lines (69 loc) · 3 KB
/
framework_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import argparse
from collections import OrderedDict
from importlib import import_module
import pickle
import numpy as np
# TODO: add device agnostic codes
frameworks = [
'pytorch',
'tensorflow'
]
models = [
'vgg16',
'resnet50',
'resnet152'
]
# TODO: modify this array assignment to ['cpu'] for cpu
precisions = [
'fp32',
'fp16'
]
class Benchmark():
def get_framework_model(self, framework, model):
framework_model = import_module('.'.join(['frameworks', framework, 'models']))
return getattr(framework_model, model)
def benchmark_model(self, mode, framework, model, precision, image_shape=(224, 224), batch_size=16, num_iterations=20, num_warmups=20):
framework_model = self.get_framework_model(framework, model)(precision, image_shape, batch_size)
# NOTE: We have a problem HERE, in the following line! (Only for inside Docker container execution)
durations = framework_model.eval(num_iterations, num_warmups) if mode == 'eval' else framework_model.train(num_iterations, num_warmups)
durations = np.array(durations)
return durations.mean() * 1000
def benchmark_all(self):
results = OrderedDict()
for framework in frameworks:
results[framework] = self.benchmark_framework(framework)
return results
def benchmark_framework(self, framework):
num_iterations=20
print("The time is the average over {} iterations".format(num_iterations))
results = OrderedDict()
for precision in precisions:
results[precision] = []
for model in models:
if model == 'densenet161' and framework != 'pytorch':
eval_duration = 0
train_duration = 0
else:
eval_duration = self.benchmark_model('eval', framework, model, precision)
train_duration = self.benchmark_model('train', framework, model, precision)
print("{}'s {} eval at {}: {}ms".format(framework, model, precision, round(eval_duration, 1)))
print("{}'s {} train at {}: {}ms".format(framework, model, precision, round(train_duration, 1)))
results[precision].append(eval_duration)
results[precision].append(train_duration)
return results
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-f', dest='framework', required=False)
args = parser.parse_args()
# TODO: if CPU, run this command first
# cat /proc/cpuinfo | grep 'model name' | uniq
# for GPU,
# lspci | grep VGA
if args.framework:
print('running benchmark for framework', args.framework)
results = Benchmark().benchmark_framework(args.framework)
# pickle.dump(results, open('{}_results.pkl'.format(args.framework), 'wb'))
else:
print('running benchmark for frameworks', frameworks)
results = Benchmark().benchmark_all()
# pickle.dump(results, open('all_results.pkl', 'wb'))