-
Notifications
You must be signed in to change notification settings - Fork 3
/
objectDetectionimage.py
36 lines (26 loc) · 990 Bytes
/
objectDetectionimage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import cv2
img_path='car.jpg'
img=cv2.imread(img_path)
classNames=[]
classFile='coco.names'
with open(classFile,'rt') as f:
classNames=f.read().rstrip('\n').split('\n')
configPath='ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weightPath='frozen_inference_graph.pb'
net = cv2.dnn_DetectionModel(weightPath, configPath)
net.setInputSize(320 , 230)
net.setInputScale(1.0 / 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
# clssIds: the returned ids , confs: the confidence , bbox: the drawn box
classIds,confs,bbox=net.detect(img,confThreshold=0.5)
#confThreshold
print(classIds,bbox)
if len(classIds) !=0:
for classid, confidence, box in zip(classIds.flatten() ,confs.flatten(), bbox):
cv2.rectangle(img , box ,color=(0,255,0),thickness=2)
cv2.putText(img , classNames[classid-1] , (box[0]+10 ,box[1]+20 ),cv2.FONT_HERSHEY_SIMPLEX,1,(0,255,0),thickness=2)
#show image
img=cv2.resize(img, (800, 600))
cv2.imshow('Detector',img)
cv2.waitKey(0)