forked from locuslab/qpth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprof-linear.py
executable file
·127 lines (102 loc) · 3.74 KB
/
prof-linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python
# import setGPU
import argparse
import sys
import numpy as np
import numpy.random as npr
from qpth.qp import QPFunction
# import qpth.solvers.pdipm.single as pdipm_s
# import qpth.solvers.pdipm.batch as pdipm_b
import time
import torch
from torch import nn
from torch.autograd import Variable
from IPython.core import ultratb
sys.excepthook = ultratb.FormattedTB(mode='Verbose',
color_scheme='Linux', call_pdb=1)
import setproctitle
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--nTrials', type=int, default=10)
args = parser.parse_args()
setproctitle.setproctitle('bamos.optnet.prof-linear')
npr.seed(0)
prof(args)
def prof(args):
print('| \# Vars | \# Batch | Linear f/b | qpth f/b |')
# for nz, nBatch in itertools.product([100,500], [1, 64, 128]):
nBatch = 128
all_linearf, all_qpthf = [], []
all_linearb, all_qpthb = [], []
for nz in [10, 50, 100, 500]:
linearf_times, qpthf_times, linearb_times, qpthb_times = \
prof_instance(nz, nBatch, args.nTrials)
all_linearf.append((linearf_times.mean(), linearf_times.std()))
all_qpthf.append((qpthf_times.mean(), qpthf_times.std()))
all_linearb.append((linearb_times.mean(), linearb_times.std()))
all_qpthb.append((qpthb_times.mean(), qpthb_times.std()))
print(("| {:5d} " * 2 + "| ${:.3e} \pm {:.3e}$ s " * 4 + '|').format(
nz, nBatch,
linearf_times.mean(), linearf_times.std(),
linearb_times.mean(), linearb_times.std(),
qpthf_times.mean(), qpthf_times.std(),
qpthb_times.mean(), qpthb_times.std()))
print('linearf = ', all_linearf)
print('qpthf = ', all_qpthf)
print('linearb = ', all_linearb)
print('qpthb = ', all_qpthb)
def prof_instance(nz, nBatch, nTrials, cuda=True):
nineq, neq = nz, 0
assert(neq == 0)
L = npr.rand(nBatch, nz, nz)
Q = np.matmul(L, L.transpose((0, 2, 1))) + 1e-3 * np.eye(nz, nz)
G = npr.randn(nBatch, nineq, nz)
z0 = npr.randn(nBatch, nz)
s0 = npr.rand(nBatch, nineq)
p = npr.randn(nBatch, nz)
h = np.matmul(G, np.expand_dims(z0, axis=(2))).squeeze(2) + s0
A = npr.randn(nBatch, neq, nz)
b = np.matmul(A, np.expand_dims(z0, axis=(2))).squeeze(2)
lm = nn.Linear(nz, nz)
p, L, Q, G, z0, s0, h = [torch.Tensor(x) for x in [p, L, Q, G, z0, s0, h]]
if cuda:
p, L, Q, G, z0, s0, h = [x.cuda() for x in [p, L, Q, G, z0, s0, h]]
lm = lm.cuda()
if neq > 0:
A = torch.Tensor(A)
b = torch.Tensor(b)
else:
A, b = [torch.Tensor()] * 2
if cuda:
A = A.cuda()
b = b.cuda()
p, L, Q, G, z0, s0, h, A, b = [
Variable(x) for x in [p, L, Q, G, z0, s0, h, A, b]]
p.requires_grad = True
linearf_times = []
linearb_times = []
for i in range(nTrials + 1):
start = time.time()
zhat_l = lm(p)
linearf_times.append(time.time() - start)
start = time.time()
zhat_l.backward(torch.ones(nBatch, nz).cuda())
linearb_times.append(time.time() - start)
linearf_times = linearf_times[1:]
linearb_times = linearb_times[1:]
qpthf_times = []
qpthb_times = []
for i in range(nTrials + 1):
start = time.time()
qpf = QPFunction()
zhat_b = qpf(Q, p, G, h, A, b)
qpthf_times.append(time.time() - start)
start = time.time()
zhat_b.backward(torch.ones(nBatch, nz).cuda())
qpthb_times.append(time.time() - start)
qpthf_times = qpthf_times[1:]
qpthb_times = qpthb_times[1:]
return np.array(linearf_times), np.array(qpthf_times), \
np.array(linearb_times), np.array(qpthb_times)
if __name__ == '__main__':
main()