forked from njh/EtherCard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tcpip.cpp
841 lines (764 loc) · 32.8 KB
/
tcpip.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
// IP, ARP, UDP and TCP functions.
// Author: Guido Socher
// Copyright: GPL V2
//
// The TCP implementation uses some size optimisations which are valid
// only if all data can be sent in one single packet. This is however
// not a big limitation for a microcontroller as you will anyhow use
// small web-pages. The web server must send the entire web page in one
// packet. The client "web browser" as implemented here can also receive
// large pages.
//
// 2010-05-20 <[email protected]>
#include "EtherCard.h"
#include "net.h"
#undef word // arduino nonsense
#define gPB ether.buffer
#define PINGPATTERN 0x42
// Avoid spurious pgmspace warnings - http://forum.jeelabs.net/node/327
// See also http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34734
//#undef PROGMEM
//#define PROGMEM __attribute__(( section(".progmem.data") ))
//#undef PSTR
//#define PSTR(s) (__extension__({static prog_char c[] PROGMEM = (s); &c[0];}))
#define TCP_STATE_SENDSYN 1
#define TCP_STATE_SYNSENT 2
#define TCP_STATE_ESTABLISHED 3
#define TCP_STATE_NOTUSED 4
#define TCP_STATE_CLOSING 5
#define TCP_STATE_CLOSED 6
#define TCPCLIENT_SRC_PORT_H 11 //Source port (MSB) for TCP/IP client connections - hardcode all TCP/IP client connection from ports in range 2816-3071
static uint8_t tcpclient_src_port_l=1; // Source port (LSB) for tcp/ip client connections - increments on each TCP/IP request
static uint8_t tcp_fd; // a file descriptor, will be encoded into the port
static uint8_t tcp_client_state; //TCP connection state: 1=Send SYN, 2=SYN sent awaiting SYN+ACK, 3=Established, 4=Not used, 5=Closing, 6=Closed
static uint8_t tcp_client_port_h; // Destination port (MSB) of TCP/IP client connection
static uint8_t tcp_client_port_l; // Destination port (LSB) of TCP/IP client connection
static uint8_t (*client_tcp_result_cb)(uint8_t,uint8_t,uint16_t,uint16_t); // Pointer to callback function to handle response to current TCP/IP request
static uint16_t (*client_tcp_datafill_cb)(uint8_t); //Pointer to callback function to handle payload data in response to current TCP/IP request
static uint8_t www_fd; // ID of current http request (only one http request at a time - one of the 8 possible concurrent TCP/IP connections)
static void (*client_browser_cb)(uint8_t,uint16_t,uint16_t); // Pointer to callback function to handle result of current HTTP request
static const char *client_additionalheaderline; // Pointer to c-string additional http request header info
static const char *client_postval;
static const char *client_urlbuf; // Pointer to c-string path part of HTTP request URL
static const char *client_urlbuf_var; // Pointer to c-string filename part of HTTP request URL
static const char *client_hoststr; // Pointer to c-string hostname of current HTTP request
static void (*icmp_cb)(uint8_t *ip); // Pointer to callback function for ICMP ECHO response handler (triggers when localhost recieves ping respnse (pong))
static uint8_t destmacaddr[ETH_LEN]; // storing both dns server and destination mac addresses, but at different times because both are never needed at same time.
static boolean waiting_for_dns_mac = false; //might be better to use bit flags and bitmask operations for these conditions
static boolean has_dns_mac = false;
static boolean waiting_for_dest_mac = false;
static boolean has_dest_mac = false;
static uint8_t gwmacaddr[ETH_LEN]; // Hardware (MAC) address of gateway router
static uint8_t waitgwmac; // Bitwise flags of gateway router status - see below for states
//Define gatweay router ARP statuses
#define WGW_INITIAL_ARP 1 // First request, no answer yet
#define WGW_HAVE_GW_MAC 2 // Have gateway router MAC
#define WGW_REFRESHING 4 // Refreshing but already have gateway MAC
#define WGW_ACCEPT_ARP_REPLY 8 // Accept an ARP reply
static uint16_t info_data_len; // Length of TCP/IP payload
static uint8_t seqnum = 0xa; // My initial tcp sequence number
static uint8_t result_fd = 123; // Session id of last reply
static const char* result_ptr; // Pointer to TCP/IP data
static unsigned long SEQ; // TCP/IP sequence number
#define CLIENTMSS 550
#define TCP_DATA_START ((uint16_t)TCP_SRC_PORT_H_P+(gPB[TCP_HEADER_LEN_P]>>4)*4) // Get offset of TCP/IP payload data
const unsigned char arpreqhdr[] PROGMEM = { 0,1,8,0,6,4,0,1 }; // ARP request header
const unsigned char iphdr[] PROGMEM = { 0x45,0,0,0x82,0,0,0x40,0,0x20 }; //IP header
const unsigned char ntpreqhdr[] PROGMEM = { 0xE3,0,4,0xFA,0,1,0,0,0,1 }; //NTP request header
extern const uint8_t allOnes[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; // Used for hardware (MAC) and IP broadcast addresses
static void fill_checksum(uint8_t dest, uint8_t off, uint16_t len,uint8_t type) {
const uint8_t* ptr = gPB + off;
uint32_t sum = type==1 ? IP_PROTO_UDP_V+len-8 :
type==2 ? IP_PROTO_TCP_V+len-8 : 0;
while(len >1) {
sum += (uint16_t) (((uint32_t)*ptr<<8)|*(ptr+1));
ptr+=2;
len-=2;
}
if (len)
sum += ((uint32_t)*ptr)<<8;
while (sum>>16)
sum = (uint16_t) sum + (sum >> 16);
uint16_t ck = ~ (uint16_t) sum;
gPB[dest] = ck>>8;
gPB[dest+1] = ck;
}
static void setMACs (const uint8_t *mac) {
EtherCard::copyMac(gPB + ETH_DST_MAC, mac);
EtherCard::copyMac(gPB + ETH_SRC_MAC, EtherCard::mymac);
}
static void setMACandIPs (const uint8_t *mac, const uint8_t *dst) {
setMACs(mac);
EtherCard::copyIp(gPB + IP_DST_P, dst);
EtherCard::copyIp(gPB + IP_SRC_P, EtherCard::myip);
}
static uint8_t check_ip_message_is_from(const uint8_t *ip) {
return memcmp(gPB + IP_SRC_P, ip, IP_LEN) == 0;
}
static boolean is_lan(const uint8_t source[IP_LEN], const uint8_t destination[IP_LEN]) {
if(source[0] == 0 || destination[0] == 0) {
return false;
}
for(int i = 0; i < IP_LEN; i++)
if((source[i] & EtherCard::netmask[i]) != (destination[i] & EtherCard::netmask[i])) {
return false;
}
return true;
}
static uint8_t eth_type_is_arp_and_my_ip(uint16_t len) {
return len >= 41 && gPB[ETH_TYPE_H_P] == ETHTYPE_ARP_H_V &&
gPB[ETH_TYPE_L_P] == ETHTYPE_ARP_L_V &&
memcmp(gPB + ETH_ARP_DST_IP_P, EtherCard::myip, IP_LEN) == 0;
}
static uint8_t eth_type_is_ip_and_my_ip(uint16_t len) {
return len >= 42 && gPB[ETH_TYPE_H_P] == ETHTYPE_IP_H_V &&
gPB[ETH_TYPE_L_P] == ETHTYPE_IP_L_V &&
gPB[IP_HEADER_LEN_VER_P] == 0x45 &&
(memcmp(gPB + IP_DST_P, EtherCard::myip, IP_LEN) == 0 //not my IP
|| (memcmp(gPB + IP_DST_P, EtherCard::broadcastip, IP_LEN) == 0) //not subnet broadcast
|| (memcmp(gPB + IP_DST_P, allOnes, IP_LEN) == 0)); //not global broadcasts
//!@todo Handle multicast
}
static void fill_ip_hdr_checksum() {
gPB[IP_CHECKSUM_P] = 0;
gPB[IP_CHECKSUM_P+1] = 0;
gPB[IP_FLAGS_P] = 0x40; // don't fragment
gPB[IP_FLAGS_P+1] = 0; // fragement offset
gPB[IP_TTL_P] = 64; // ttl
fill_checksum(IP_CHECKSUM_P, IP_P, IP_HEADER_LEN,0);
}
static void make_eth_ip() {
setMACs(gPB + ETH_SRC_MAC);
EtherCard::copyIp(gPB + IP_DST_P, gPB + IP_SRC_P);
EtherCard::copyIp(gPB + IP_SRC_P, EtherCard::myip);
fill_ip_hdr_checksum();
}
static void step_seq(uint16_t rel_ack_num,uint8_t cp_seq) {
uint8_t i;
uint8_t tseq;
i = 4;
while(i>0) {
rel_ack_num = gPB[TCP_SEQ_H_P+i-1]+rel_ack_num;
tseq = gPB[TCP_SEQACK_H_P+i-1];
gPB[TCP_SEQACK_H_P+i-1] = rel_ack_num;
if (cp_seq)
gPB[TCP_SEQ_H_P+i-1] = tseq;
else
gPB[TCP_SEQ_H_P+i-1] = 0; // some preset value
rel_ack_num = rel_ack_num>>8;
i--;
}
}
static void make_tcphead(uint16_t rel_ack_num,uint8_t cp_seq) {
uint8_t i = gPB[TCP_DST_PORT_H_P];
gPB[TCP_DST_PORT_H_P] = gPB[TCP_SRC_PORT_H_P];
gPB[TCP_SRC_PORT_H_P] = i;
uint8_t j = gPB[TCP_DST_PORT_L_P];
gPB[TCP_DST_PORT_L_P] = gPB[TCP_SRC_PORT_L_P];
gPB[TCP_SRC_PORT_L_P] = j;
step_seq(rel_ack_num,cp_seq);
gPB[TCP_CHECKSUM_H_P] = 0;
gPB[TCP_CHECKSUM_L_P] = 0;
gPB[TCP_HEADER_LEN_P] = 0x50;
}
static void make_arp_answer_from_request() {
setMACs(gPB + ETH_SRC_MAC);
gPB[ETH_ARP_OPCODE_H_P] = ETH_ARP_OPCODE_REPLY_H_V;
gPB[ETH_ARP_OPCODE_L_P] = ETH_ARP_OPCODE_REPLY_L_V;
EtherCard::copyMac(gPB + ETH_ARP_DST_MAC_P, gPB + ETH_ARP_SRC_MAC_P);
EtherCard::copyMac(gPB + ETH_ARP_SRC_MAC_P, EtherCard::mymac);
EtherCard::copyIp(gPB + ETH_ARP_DST_IP_P, gPB + ETH_ARP_SRC_IP_P);
EtherCard::copyIp(gPB + ETH_ARP_SRC_IP_P, EtherCard::myip);
EtherCard::packetSend(42);
}
static void make_echo_reply_from_request(uint16_t len) {
make_eth_ip();
gPB[ICMP_TYPE_P] = ICMP_TYPE_ECHOREPLY_V;
if (gPB[ICMP_CHECKSUM_P] > (0xFF-0x08))
gPB[ICMP_CHECKSUM_P+1]++;
gPB[ICMP_CHECKSUM_P] += 0x08;
EtherCard::packetSend(len);
}
void EtherCard::makeUdpReply (const char *data,uint8_t datalen,uint16_t port) {
if (datalen>220)
datalen = 220;
gPB[IP_TOTLEN_H_P] = (IP_HEADER_LEN+UDP_HEADER_LEN+datalen) >>8;
gPB[IP_TOTLEN_L_P] = IP_HEADER_LEN+UDP_HEADER_LEN+datalen;
make_eth_ip();
gPB[UDP_DST_PORT_H_P] = gPB[UDP_SRC_PORT_H_P];
gPB[UDP_DST_PORT_L_P] = gPB[UDP_SRC_PORT_L_P];
gPB[UDP_SRC_PORT_H_P] = port>>8;
gPB[UDP_SRC_PORT_L_P] = port;
gPB[UDP_LEN_H_P] = (UDP_HEADER_LEN+datalen) >> 8;
gPB[UDP_LEN_L_P] = UDP_HEADER_LEN+datalen;
gPB[UDP_CHECKSUM_H_P] = 0;
gPB[UDP_CHECKSUM_L_P] = 0;
memcpy(gPB + UDP_DATA_P, data, datalen);
fill_checksum(UDP_CHECKSUM_H_P, IP_SRC_P, 16 + datalen,1);
packetSend(UDP_HEADER_LEN+IP_HEADER_LEN+ETH_HEADER_LEN+datalen);
}
static void make_tcp_synack_from_syn() {
gPB[IP_TOTLEN_H_P] = 0;
gPB[IP_TOTLEN_L_P] = IP_HEADER_LEN+TCP_HEADER_LEN_PLAIN+4;
make_eth_ip();
gPB[TCP_FLAGS_P] = TCP_FLAGS_SYNACK_V;
make_tcphead(1,0);
gPB[TCP_SEQ_H_P+0] = 0;
gPB[TCP_SEQ_H_P+1] = 0;
gPB[TCP_SEQ_H_P+2] = seqnum;
gPB[TCP_SEQ_H_P+3] = 0;
seqnum += 3;
gPB[TCP_OPTIONS_P] = 2;
gPB[TCP_OPTIONS_P+1] = 4;
gPB[TCP_OPTIONS_P+2] = 0x05;
gPB[TCP_OPTIONS_P+3] = 0x0;
gPB[TCP_HEADER_LEN_P] = 0x60;
gPB[TCP_WIN_SIZE] = 0x5; // 1400=0x578
gPB[TCP_WIN_SIZE+1] = 0x78;
fill_checksum(TCP_CHECKSUM_H_P, IP_SRC_P, 8+TCP_HEADER_LEN_PLAIN+4,2);
EtherCard::packetSend(IP_HEADER_LEN+TCP_HEADER_LEN_PLAIN+4+ETH_HEADER_LEN);
}
uint16_t EtherCard::getTcpPayloadLength() {
int16_t i = (((int16_t)gPB[IP_TOTLEN_H_P])<<8)|gPB[IP_TOTLEN_L_P];
i -= IP_HEADER_LEN;
i -= (gPB[TCP_HEADER_LEN_P]>>4)*4; // generate len in bytes;
if (i<=0)
i = 0;
return (uint16_t)i;
}
static void make_tcp_ack_from_any(int16_t datlentoack,uint8_t addflags) {
gPB[TCP_FLAGS_P] = TCP_FLAGS_ACK_V|addflags;
if (addflags!=TCP_FLAGS_RST_V && datlentoack==0)
datlentoack = 1;
make_tcphead(datlentoack,1); // no options
uint16_t j = IP_HEADER_LEN+TCP_HEADER_LEN_PLAIN;
gPB[IP_TOTLEN_H_P] = j>>8;
gPB[IP_TOTLEN_L_P] = j;
make_eth_ip();
gPB[TCP_WIN_SIZE] = 0x4; // 1024=0x400, 1280=0x500 2048=0x800 768=0x300
gPB[TCP_WIN_SIZE+1] = 0;
fill_checksum(TCP_CHECKSUM_H_P, IP_SRC_P, 8+TCP_HEADER_LEN_PLAIN,2);
EtherCard::packetSend(IP_HEADER_LEN+TCP_HEADER_LEN_PLAIN+ETH_HEADER_LEN);
}
static void make_tcp_ack_with_data_noflags(uint16_t dlen) {
uint16_t j = IP_HEADER_LEN+TCP_HEADER_LEN_PLAIN+dlen;
gPB[IP_TOTLEN_H_P] = j>>8;
gPB[IP_TOTLEN_L_P] = j;
fill_ip_hdr_checksum();
gPB[TCP_CHECKSUM_H_P] = 0;
gPB[TCP_CHECKSUM_L_P] = 0;
fill_checksum(TCP_CHECKSUM_H_P, IP_SRC_P, 8+TCP_HEADER_LEN_PLAIN+dlen,2);
EtherCard::packetSend(IP_HEADER_LEN+TCP_HEADER_LEN_PLAIN+dlen+ETH_HEADER_LEN);
}
void EtherCard::httpServerReply (uint16_t dlen) {
make_tcp_ack_from_any(info_data_len,0); // send ack for http get
gPB[TCP_FLAGS_P] = TCP_FLAGS_ACK_V|TCP_FLAGS_PUSH_V|TCP_FLAGS_FIN_V;
make_tcp_ack_with_data_noflags(dlen); // send data
}
static uint32_t getBigEndianLong(byte offs) { //get the sequence number of packets after an ack from GET
return (((unsigned long)gPB[offs]*256+gPB[offs+1])*256+gPB[offs+2])*256+gPB[offs+3];
} //thanks to mstuetz for the missing (unsigned long)
static void setSequenceNumber(uint32_t seq) {
gPB[TCP_SEQ_H_P] = (seq & 0xff000000 ) >> 24;
gPB[TCP_SEQ_H_P+1] = (seq & 0xff0000 ) >> 16;
gPB[TCP_SEQ_H_P+2] = (seq & 0xff00 ) >> 8;
gPB[TCP_SEQ_H_P+3] = (seq & 0xff );
}
uint32_t EtherCard::getSequenceNumber() {
return getBigEndianLong(TCP_SEQ_H_P);
}
void EtherCard::httpServerReplyAck () {
make_tcp_ack_from_any(getTcpPayloadLength(),0); // send ack for http request
SEQ = getSequenceNumber(); //get the sequence number of packets after an ack from GET
}
void EtherCard::httpServerReply_with_flags (uint16_t dlen , uint8_t flags) {
setSequenceNumber(SEQ);
gPB[TCP_FLAGS_P] = flags; // final packet
make_tcp_ack_with_data_noflags(dlen); // send data
SEQ=SEQ+dlen;
}
void EtherCard::clientIcmpRequest(const uint8_t *destip) {
if(is_lan(EtherCard::myip, destip)) {
setMACandIPs(destmacaddr, destip);
} else {
setMACandIPs(gwmacaddr, destip);
}
gPB[ETH_TYPE_H_P] = ETHTYPE_IP_H_V;
gPB[ETH_TYPE_L_P] = ETHTYPE_IP_L_V;
memcpy_P(gPB + IP_P,iphdr,sizeof iphdr);
gPB[IP_TOTLEN_L_P] = 0x54;
gPB[IP_PROTO_P] = IP_PROTO_ICMP_V;
fill_ip_hdr_checksum();
gPB[ICMP_TYPE_P] = ICMP_TYPE_ECHOREQUEST_V;
gPB[ICMP_TYPE_P+1] = 0; // code
gPB[ICMP_CHECKSUM_H_P] = 0;
gPB[ICMP_CHECKSUM_L_P] = 0;
gPB[ICMP_IDENT_H_P] = 5; // some number
gPB[ICMP_IDENT_L_P] = EtherCard::myip[3]; // last byte of my IP
gPB[ICMP_IDENT_L_P+1] = 0; // seq number, high byte
gPB[ICMP_IDENT_L_P+2] = 1; // seq number, low byte, we send only 1 ping at a time
memset(gPB + ICMP_DATA_P, PINGPATTERN, 56);
fill_checksum(ICMP_CHECKSUM_H_P, ICMP_TYPE_P, 56+8,0);
packetSend(98);
}
void EtherCard::ntpRequest (uint8_t *ntpip,uint8_t srcport) {
if(is_lan(myip, ntpip)) {
setMACandIPs(destmacaddr, ntpip);
} else {
setMACandIPs(gwmacaddr, ntpip);
}
gPB[ETH_TYPE_H_P] = ETHTYPE_IP_H_V;
gPB[ETH_TYPE_L_P] = ETHTYPE_IP_L_V;
memcpy_P(gPB + IP_P,iphdr,sizeof iphdr);
gPB[IP_TOTLEN_L_P] = 0x4c;
gPB[IP_PROTO_P] = IP_PROTO_UDP_V;
fill_ip_hdr_checksum();
gPB[UDP_DST_PORT_H_P] = 0;
gPB[UDP_DST_PORT_L_P] = NTP_PORT; // ntp = 123
gPB[UDP_SRC_PORT_H_P] = 10;
gPB[UDP_SRC_PORT_L_P] = srcport; // lower 8 bit of src port
gPB[UDP_LEN_H_P] = 0;
gPB[UDP_LEN_L_P] = 56; // fixed len
gPB[UDP_CHECKSUM_H_P] = 0;
gPB[UDP_CHECKSUM_L_P] = 0;
memset(gPB + UDP_DATA_P, 0, 48);
memcpy_P(gPB + UDP_DATA_P,ntpreqhdr,10);
fill_checksum(UDP_CHECKSUM_H_P, IP_SRC_P, 16 + 48,1);
packetSend(90);
}
uint8_t EtherCard::ntpProcessAnswer (uint32_t *time,uint8_t dstport_l) {
if ((dstport_l && gPB[UDP_DST_PORT_L_P]!=dstport_l) || gPB[UDP_LEN_H_P]!=0 ||
gPB[UDP_LEN_L_P]!=56 || gPB[UDP_SRC_PORT_L_P]!=0x7b)
return 0;
((uint8_t*) time)[3] = gPB[0x52];
((uint8_t*) time)[2] = gPB[0x53];
((uint8_t*) time)[1] = gPB[0x54];
((uint8_t*) time)[0] = gPB[0x55];
return 1;
}
void EtherCard::udpPrepare (uint16_t sport, const uint8_t *dip, uint16_t dport) {
if(is_lan(myip, dip)) { // this works because both dns mac and destinations mac are stored in same variable - destmacaddr
setMACandIPs(destmacaddr, dip); // at different times. The program could have separate variable for dns mac, then here should be
} else { // checked if dip is dns ip and separately if dip is hisip and then use correct mac.
setMACandIPs(gwmacaddr, dip);
}
// see http://tldp.org/HOWTO/Multicast-HOWTO-2.html
// multicast or broadcast address, https://github.com/jcw/ethercard/issues/59
if ((dip[0] & 0xF0) == 0xE0 || *((unsigned long*) dip) == 0xFFFFFFFF || !memcmp(broadcastip,dip,IP_LEN))
EtherCard::copyMac(gPB + ETH_DST_MAC, allOnes);
gPB[ETH_TYPE_H_P] = ETHTYPE_IP_H_V;
gPB[ETH_TYPE_L_P] = ETHTYPE_IP_L_V;
memcpy_P(gPB + IP_P,iphdr,sizeof iphdr);
gPB[IP_TOTLEN_H_P] = 0;
gPB[IP_PROTO_P] = IP_PROTO_UDP_V;
gPB[UDP_DST_PORT_H_P] = (dport>>8);
gPB[UDP_DST_PORT_L_P] = dport;
gPB[UDP_SRC_PORT_H_P] = (sport>>8);
gPB[UDP_SRC_PORT_L_P] = sport;
gPB[UDP_LEN_H_P] = 0;
gPB[UDP_CHECKSUM_H_P] = 0;
gPB[UDP_CHECKSUM_L_P] = 0;
}
void EtherCard::udpTransmit (uint16_t datalen) {
gPB[IP_TOTLEN_H_P] = (IP_HEADER_LEN+UDP_HEADER_LEN+datalen) >> 8;
gPB[IP_TOTLEN_L_P] = IP_HEADER_LEN+UDP_HEADER_LEN+datalen;
fill_ip_hdr_checksum();
gPB[UDP_LEN_H_P] = (UDP_HEADER_LEN+datalen) >>8;
gPB[UDP_LEN_L_P] = UDP_HEADER_LEN+datalen;
fill_checksum(UDP_CHECKSUM_H_P, IP_SRC_P, 16 + datalen,1);
packetSend(UDP_HEADER_LEN+IP_HEADER_LEN+ETH_HEADER_LEN+datalen);
}
void EtherCard::sendUdp (const char *data, uint8_t datalen, uint16_t sport,
const uint8_t *dip, uint16_t dport) {
udpPrepare(sport, dip, dport);
if (datalen>220)
datalen = 220;
memcpy(gPB + UDP_DATA_P, data, datalen);
udpTransmit(datalen);
}
void EtherCard::sendWol (uint8_t *wolmac) {
setMACandIPs(allOnes, allOnes);
gPB[ETH_TYPE_H_P] = ETHTYPE_IP_H_V;
gPB[ETH_TYPE_L_P] = ETHTYPE_IP_L_V;
memcpy_P(gPB + IP_P,iphdr,9);
gPB[IP_TOTLEN_L_P] = 0x82;
gPB[IP_PROTO_P] = IP_PROTO_UDP_V;
fill_ip_hdr_checksum();
gPB[UDP_DST_PORT_H_P] = 0;
gPB[UDP_DST_PORT_L_P] = 0x9; // wol = normally 9
gPB[UDP_SRC_PORT_H_P] = 10;
gPB[UDP_SRC_PORT_L_P] = 0x42; // source port does not matter
gPB[UDP_LEN_H_P] = 0;
gPB[UDP_LEN_L_P] = 110; // fixed len
gPB[UDP_CHECKSUM_H_P] = 0;
gPB[UDP_CHECKSUM_L_P] = 0;
copyMac(gPB + UDP_DATA_P, allOnes);
uint8_t pos = UDP_DATA_P;
for (uint8_t m = 0; m < 16; ++m) {
pos += 6;
copyMac(gPB + pos, wolmac);
}
fill_checksum(UDP_CHECKSUM_H_P, IP_SRC_P, 16 + 102,1);
packetSend(pos + 6);
}
// make a arp request
static void client_arp_whohas(uint8_t *ip_we_search) {
setMACs(allOnes);
gPB[ETH_TYPE_H_P] = ETHTYPE_ARP_H_V;
gPB[ETH_TYPE_L_P] = ETHTYPE_ARP_L_V;
memcpy_P(gPB + ETH_ARP_P, arpreqhdr, sizeof arpreqhdr);
memset(gPB + ETH_ARP_DST_MAC_P, 0, ETH_LEN);
EtherCard::copyMac(gPB + ETH_ARP_SRC_MAC_P, EtherCard::mymac);
EtherCard::copyIp(gPB + ETH_ARP_DST_IP_P, ip_we_search);
EtherCard::copyIp(gPB + ETH_ARP_SRC_IP_P, EtherCard::myip);
EtherCard::packetSend(42);
}
uint8_t EtherCard::clientWaitingGw () {
return !(waitgwmac & WGW_HAVE_GW_MAC);
}
uint8_t EtherCard::clientWaitingDns () {
if(is_lan(myip, dnsip))
return !has_dns_mac;
return !(waitgwmac & WGW_HAVE_GW_MAC);
}
static uint8_t client_store_mac(uint8_t *source_ip, uint8_t *mac) {
if (memcmp(gPB + ETH_ARP_SRC_IP_P, source_ip, IP_LEN) != 0)
return 0;
EtherCard::copyMac(mac, gPB + ETH_ARP_SRC_MAC_P);
return 1;
}
// static void client_gw_arp_refresh() {
// if (waitgwmac & WGW_HAVE_GW_MAC)
// waitgwmac |= WGW_REFRESHING;
// }
void EtherCard::setGwIp (const uint8_t *gwipaddr) {
delaycnt = 0; //request gateway ARP lookup
waitgwmac = WGW_INITIAL_ARP; // causes an arp request in the packet loop
copyIp(gwip, gwipaddr);
}
void EtherCard::updateBroadcastAddress()
{
for(uint8_t i=0; i<IP_LEN; i++)
broadcastip[i] = myip[i] | ~netmask[i];
}
static void client_syn(uint8_t srcport,uint8_t dstport_h,uint8_t dstport_l) {
if(is_lan(EtherCard::myip, EtherCard::hisip)) {
setMACandIPs(destmacaddr, EtherCard::hisip);
} else {
setMACandIPs(gwmacaddr, EtherCard::hisip);
}
gPB[ETH_TYPE_H_P] = ETHTYPE_IP_H_V;
gPB[ETH_TYPE_L_P] = ETHTYPE_IP_L_V;
memcpy_P(gPB + IP_P,iphdr,sizeof iphdr);
gPB[IP_TOTLEN_L_P] = 44; // good for syn
gPB[IP_PROTO_P] = IP_PROTO_TCP_V;
fill_ip_hdr_checksum();
gPB[TCP_DST_PORT_H_P] = dstport_h;
gPB[TCP_DST_PORT_L_P] = dstport_l;
gPB[TCP_SRC_PORT_H_P] = TCPCLIENT_SRC_PORT_H;
gPB[TCP_SRC_PORT_L_P] = srcport; // lower 8 bit of src port
memset(gPB + TCP_SEQ_H_P, 0, 8);
gPB[TCP_SEQ_H_P+2] = seqnum;
seqnum += 3;
gPB[TCP_HEADER_LEN_P] = 0x60; // 0x60=24 len: (0x60>>4) * 4
gPB[TCP_FLAGS_P] = TCP_FLAGS_SYN_V;
gPB[TCP_WIN_SIZE] = 0x3; // 1024 = 0x400 768 = 0x300, initial window
gPB[TCP_WIN_SIZE+1] = 0x0;
gPB[TCP_CHECKSUM_H_P] = 0;
gPB[TCP_CHECKSUM_L_P] = 0;
gPB[TCP_CHECKSUM_L_P+1] = 0;
gPB[TCP_CHECKSUM_L_P+2] = 0;
gPB[TCP_OPTIONS_P] = 2;
gPB[TCP_OPTIONS_P+1] = 4;
gPB[TCP_OPTIONS_P+2] = (CLIENTMSS>>8);
gPB[TCP_OPTIONS_P+3] = (uint8_t) CLIENTMSS;
fill_checksum(TCP_CHECKSUM_H_P, IP_SRC_P, 8 +TCP_HEADER_LEN_PLAIN+4,2);
// 4 is the tcp mss option:
EtherCard::packetSend(IP_HEADER_LEN+TCP_HEADER_LEN_PLAIN+ETH_HEADER_LEN+4);
}
uint8_t EtherCard::clientTcpReq (uint8_t (*result_cb)(uint8_t,uint8_t,uint16_t,uint16_t),
uint16_t (*datafill_cb)(uint8_t),uint16_t port) {
client_tcp_result_cb = result_cb;
client_tcp_datafill_cb = datafill_cb;
tcp_client_port_h = port>>8;
tcp_client_port_l = port;
tcp_client_state = TCP_STATE_SENDSYN; // Flag to packetloop to initiate a TCP/IP session by send a syn
tcp_fd = (tcp_fd + 1) & 7;
return tcp_fd;
}
static uint16_t www_client_internal_datafill_cb(uint8_t fd) {
BufferFiller bfill = EtherCard::tcpOffset();
if (fd==www_fd) {
if (client_postval == 0) {
bfill.emit_p(PSTR("GET $F$S HTTP/1.0\r\n"
"Host: $F\r\n"
"$F\r\n"
"\r\n"), client_urlbuf,
client_urlbuf_var,
client_hoststr, client_additionalheaderline);
} else {
const char* ahl = client_additionalheaderline;
bfill.emit_p(PSTR("POST $F HTTP/1.0\r\n"
"Host: $F\r\n"
"$F$S"
"Accept: */*\r\n"
"Content-Length: $D\r\n"
"Content-Type: application/x-www-form-urlencoded\r\n"
"\r\n"
"$S"), client_urlbuf,
client_hoststr,
ahl != 0 ? ahl : PSTR(""),
ahl != 0 ? "\r\n" : "",
strlen(client_postval),
client_postval);
}
}
return bfill.position();
}
static uint8_t www_client_internal_result_cb(uint8_t fd, uint8_t statuscode, uint16_t datapos, uint16_t len_of_data) {
if (fd!=www_fd)
(*client_browser_cb)(4,0,0);
else if (statuscode==0 && len_of_data>12 && client_browser_cb) {
uint8_t f = strncmp("200",(char *)&(gPB[datapos+9]),3) != 0;
(*client_browser_cb)(f, ((uint16_t)TCP_SRC_PORT_H_P+(gPB[TCP_HEADER_LEN_P]>>4)*4),len_of_data);
}
return 0;
}
void EtherCard::browseUrl (const char *urlbuf, const char *urlbuf_varpart, const char *hoststr, void (*callback)(uint8_t,uint16_t,uint16_t)) {
browseUrl(urlbuf, urlbuf_varpart, hoststr, PSTR("Accept: text/html"), callback);
}
void EtherCard::browseUrl (const char *urlbuf, const char *urlbuf_varpart, const char *hoststr, const char *additionalheaderline, void (*callback)(uint8_t,uint16_t,uint16_t)) {
client_urlbuf = urlbuf;
client_urlbuf_var = urlbuf_varpart;
client_hoststr = hoststr;
client_additionalheaderline = additionalheaderline;
client_postval = 0;
client_browser_cb = callback;
www_fd = clientTcpReq(&www_client_internal_result_cb,&www_client_internal_datafill_cb,hisport);
}
void EtherCard::httpPost (const char *urlbuf, const char *hoststr, const char *additionalheaderline, const char *postval, void (*callback)(uint8_t,uint16_t,uint16_t)) {
client_urlbuf = urlbuf;
client_hoststr = hoststr;
client_additionalheaderline = additionalheaderline;
client_postval = postval;
client_browser_cb = callback;
www_fd = clientTcpReq(&www_client_internal_result_cb,&www_client_internal_datafill_cb,hisport);
}
static uint16_t tcp_datafill_cb(uint8_t fd) {
uint16_t len = Stash::length();
Stash::extract(0, len, EtherCard::tcpOffset());
Stash::cleanup();
EtherCard::tcpOffset()[len] = 0;
#if SERIAL
Serial.print("REQUEST: ");
Serial.println(len);
Serial.println((char*) EtherCard::tcpOffset());
#endif
result_fd = 123; // bogus value
return len;
}
static uint8_t tcp_result_cb(uint8_t fd, uint8_t status, uint16_t datapos, uint16_t datalen) {
if (status == 0) {
result_fd = fd; // a valid result has been received, remember its session id
result_ptr = (char*) ether.buffer + datapos;
// result_ptr[datalen] = 0;
}
return 1;
}
uint8_t EtherCard::tcpSend () {
www_fd = clientTcpReq(&tcp_result_cb, &tcp_datafill_cb, hisport);
return www_fd;
}
const char* EtherCard::tcpReply (uint8_t fd) {
if (result_fd != fd)
return 0;
result_fd = 123; // set to a bogus value to prevent future match
return result_ptr;
}
void EtherCard::registerPingCallback (void (*callback)(uint8_t *srcip)) {
icmp_cb = callback;
}
uint8_t EtherCard::packetLoopIcmpCheckReply (const uint8_t *ip_monitoredhost) {
return gPB[IP_PROTO_P]==IP_PROTO_ICMP_V &&
gPB[ICMP_TYPE_P]==ICMP_TYPE_ECHOREPLY_V &&
gPB[ICMP_DATA_P]== PINGPATTERN &&
check_ip_message_is_from(ip_monitoredhost);
}
uint16_t EtherCard::accept(const uint16_t port, uint16_t plen) {
uint16_t pos;
if (gPB[TCP_DST_PORT_H_P] == (port >> 8) &&
gPB[TCP_DST_PORT_L_P] == ((uint8_t) port))
{ //Packet targetted at specified port
if (gPB[TCP_FLAGS_P] & TCP_FLAGS_SYN_V)
make_tcp_synack_from_syn(); //send SYN+ACK
else if (gPB[TCP_FLAGS_P] & TCP_FLAGS_ACK_V)
{ //This is an acknowledgement to our SYN+ACK so let's start processing that payload
info_data_len = getTcpPayloadLength();
if (info_data_len > 0)
{ //Got some data
pos = TCP_DATA_START; // TCP_DATA_START is a formula
//!@todo no idea what this check pos<=plen-8 does; changed this to pos<=plen as otw. perfectly valid tcp packets are ignored; still if anybody has any idea please leave a comment
if (pos <= plen)
return pos;
}
else if (gPB[TCP_FLAGS_P] & TCP_FLAGS_FIN_V)
make_tcp_ack_from_any(0,0); //No data so close connection
}
}
return 0;
}
uint16_t EtherCard::packetLoop (uint16_t plen) {
uint16_t len;
#if ETHERCARD_DHCP
if(using_dhcp) {
ether.DhcpStateMachine(plen);
}
#endif
if (plen==0) {
//Check every 65536 (no-packet) cycles whether we need to retry ARP request for gateway
if ((waitgwmac & WGW_INITIAL_ARP || waitgwmac & WGW_REFRESHING) &&
delaycnt==0 && isLinkUp()) {
client_arp_whohas(gwip);
waitgwmac |= WGW_ACCEPT_ARP_REPLY;
}
delaycnt++;
#if ETHERCARD_TCPCLIENT
//Initiate TCP/IP session if pending
if (tcp_client_state==TCP_STATE_SENDSYN && (waitgwmac & WGW_HAVE_GW_MAC)) { // send a syn
tcp_client_state = TCP_STATE_SYNSENT;
tcpclient_src_port_l++; // allocate a new port
client_syn(((tcp_fd<<5) | (0x1f & tcpclient_src_port_l)),tcp_client_port_h,tcp_client_port_l);
}
#endif
//!@todo this is trying to find mac only once. Need some timeout to make another call if first one doesn't succeed.
if(is_lan(myip, dnsip) && !has_dns_mac && !waiting_for_dns_mac) {
client_arp_whohas(dnsip);
waiting_for_dns_mac = true;
}
//!@todo this is trying to find mac only once. Need some timeout to make another call if first one doesn't succeed.
if(is_lan(myip, hisip) && !has_dest_mac && !waiting_for_dest_mac) {
client_arp_whohas(hisip);
waiting_for_dest_mac = true;
}
return 0;
}
if (eth_type_is_arp_and_my_ip(plen))
{ //Service ARP request
if (gPB[ETH_ARP_OPCODE_L_P]==ETH_ARP_OPCODE_REQ_L_V)
make_arp_answer_from_request();
if (waitgwmac & WGW_ACCEPT_ARP_REPLY && (gPB[ETH_ARP_OPCODE_L_P]==ETH_ARP_OPCODE_REPLY_L_V) && client_store_mac(gwip, gwmacaddr))
waitgwmac = WGW_HAVE_GW_MAC;
if (!has_dns_mac && waiting_for_dns_mac && client_store_mac(dnsip, destmacaddr)) {
has_dns_mac = true;
waiting_for_dns_mac = false;
}
if (!has_dest_mac && waiting_for_dest_mac && client_store_mac(hisip, destmacaddr)) {
has_dest_mac = true;
waiting_for_dest_mac = false;
}
return 0;
}
if (eth_type_is_ip_and_my_ip(plen)==0)
{ //Not IP so ignoring
//!@todo Add other protocols (and make each optional at compile time)
return 0;
}
#if ETHERCARD_ICMP
if (gPB[IP_PROTO_P]==IP_PROTO_ICMP_V && gPB[ICMP_TYPE_P]==ICMP_TYPE_ECHOREQUEST_V)
{ //Service ICMP echo request (ping)
if (icmp_cb)
(*icmp_cb)(&(gPB[IP_SRC_P]));
make_echo_reply_from_request(plen);
return 0;
}
#endif
#if ETHERCARD_UDPSERVER
if (ether.udpServerListening() && gPB[IP_PROTO_P]==IP_PROTO_UDP_V)
{ //Call UDP server handler (callback) if one is defined for this packet
if(ether.udpServerHasProcessedPacket(plen))
return 0; //An UDP server handler (callback) has processed this packet
}
#endif
if (plen<54 || gPB[IP_PROTO_P]!=IP_PROTO_TCP_V )
return 0; //from here on we are only interested in TCP-packets; these are longer than 54 bytes
#if ETHERCARD_TCPCLIENT
if (gPB[TCP_DST_PORT_H_P]==TCPCLIENT_SRC_PORT_H)
{ //Source port is in range reserved (by EtherCard) for client TCP/IP connections
if (check_ip_message_is_from(hisip)==0)
return 0; //Not current TCP/IP connection (only handle one at a time)
if (gPB[TCP_FLAGS_P] & TCP_FLAGS_RST_V)
{ //TCP reset flagged
if (client_tcp_result_cb)
(*client_tcp_result_cb)((gPB[TCP_DST_PORT_L_P]>>5)&0x7,3,0,0);
tcp_client_state = TCP_STATE_CLOSING;
return 0;
}
len = getTcpPayloadLength();
if (tcp_client_state==TCP_STATE_SYNSENT)
{ //Waiting for SYN-ACK
if ((gPB[TCP_FLAGS_P] & TCP_FLAGS_SYN_V) && (gPB[TCP_FLAGS_P] &TCP_FLAGS_ACK_V))
{ //SYN and ACK flags set so this is an acknowledgement to our SYN
make_tcp_ack_from_any(0,0);
gPB[TCP_FLAGS_P] = TCP_FLAGS_ACK_V|TCP_FLAGS_PUSH_V;
if (client_tcp_datafill_cb)
len = (*client_tcp_datafill_cb)((gPB[TCP_SRC_PORT_L_P]>>5)&0x7);
else
len = 0;
tcp_client_state = TCP_STATE_ESTABLISHED;
make_tcp_ack_with_data_noflags(len);
}
else
{ //Expecting SYN+ACK so reset and resend SYN
tcp_client_state = TCP_STATE_SENDSYN; // retry
len++;
if (gPB[TCP_FLAGS_P] & TCP_FLAGS_ACK_V)
len = 0;
make_tcp_ack_from_any(len,TCP_FLAGS_RST_V);
}
return 0;
}
if (tcp_client_state==TCP_STATE_ESTABLISHED && len>0)
{ //TCP connection established so read data
if (client_tcp_result_cb) {
uint16_t tcpstart = TCP_DATA_START; // TCP_DATA_START is a formula
if (tcpstart>plen-8)
tcpstart = plen-8; // dummy but save
uint16_t save_len = len;
if (tcpstart+len>plen)
save_len = plen-tcpstart;
(*client_tcp_result_cb)((gPB[TCP_DST_PORT_L_P]>>5)&0x7,0,tcpstart,save_len); //Call TCP handler (callback) function
if(persist_tcp_connection)
{ //Keep connection alive by sending ACK
make_tcp_ack_from_any(len,TCP_FLAGS_PUSH_V);
}
else
{ //Close connection
make_tcp_ack_from_any(len,TCP_FLAGS_PUSH_V|TCP_FLAGS_FIN_V);
tcp_client_state = TCP_STATE_CLOSED;
}
return 0;
}
}
if (tcp_client_state != TCP_STATE_CLOSING)
{ //
if (gPB[TCP_FLAGS_P] & TCP_FLAGS_FIN_V) {
if(tcp_client_state == TCP_STATE_ESTABLISHED) {
return 0; // In some instances FIN is received *before* DATA. If that is the case, we just return here and keep looking for the data packet
}
make_tcp_ack_from_any(len+1,TCP_FLAGS_PUSH_V|TCP_FLAGS_FIN_V);
tcp_client_state = TCP_STATE_CLOSED; // connection terminated
} else if (len>0) {
make_tcp_ack_from_any(len,0);
}
}
return 0;
}
#endif
#if ETHERCARD_TCPSERVER
//If we are here then this is a TCP/IP packet targetted at us and not related to our client connection so accept
return accept(hisport, plen);
#endif
}
void EtherCard::persistTcpConnection(bool persist) {
persist_tcp_connection = persist;
}