-
Notifications
You must be signed in to change notification settings - Fork 5
/
build.py
910 lines (840 loc) · 37.1 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import math
import os
import time
from pathlib import Path
# isort: off
import torch
import torch.multiprocessing as mp
import tensorrt as trt
# isort: on
from transformers import LlamaConfig, LlamaForCausalLM
try:
from transformers import MixtralForCausalLM
except ImportError:
MixtralForCausalLM = None
from weight import (get_scaling_factors, load_from_awq_llama, load_from_binary,
load_from_gptq_llama, load_from_hf_checkpoint,
load_from_hf_llama, load_from_meta_llama)
import tensorrt_llm
from tensorrt_llm import profiler
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.layers import MoeConfig
from tensorrt_llm.layers.attention import PositionEmbeddingType
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import quantize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
from tensorrt_llm.runtime.lora_manager import LoraConfig
from weight import parse_ft_config # isort:skip
MODEL_NAME = "llama"
# 2 routines: get_engine_name, serialize_engine
# are direct copy from gpt example, TODO: put in utils?
import onnx
import tensorrt as trt
from onnx import TensorProto, helper
def trt_dtype_to_onnx(dtype):
if dtype == trt.float16:
return TensorProto.DataType.FLOAT16
elif dtype == trt.float32:
return TensorProto.DataType.FLOAT
elif dtype == trt.int32:
return TensorProto.DataType.INT32
else:
raise TypeError("%s is not supported" % dtype)
def to_onnx(network, path):
inputs = []
for i in range(network.num_inputs):
network_input = network.get_input(i)
inputs.append(
helper.make_tensor_value_info(
network_input.name, trt_dtype_to_onnx(network_input.dtype),
list(network_input.shape)))
outputs = []
for i in range(network.num_outputs):
network_output = network.get_output(i)
outputs.append(
helper.make_tensor_value_info(
network_output.name, trt_dtype_to_onnx(network_output.dtype),
list(network_output.shape)))
nodes = []
for i in range(network.num_layers):
layer = network.get_layer(i)
layer_inputs = []
for j in range(layer.num_inputs):
ipt = layer.get_input(j)
if ipt is not None:
layer_inputs.append(layer.get_input(j).name)
layer_outputs = [
layer.get_output(j).name for j in range(layer.num_outputs)
]
nodes.append(
helper.make_node(str(layer.type),
name=layer.name,
inputs=layer_inputs,
outputs=layer_outputs,
domain="com.nvidia"))
onnx_model = helper.make_model(helper.make_graph(nodes,
'attention',
inputs,
outputs,
initializer=None),
producer_name='NVIDIA')
onnx.save(onnx_model, path)
def get_engine_name(model, dtype, tp_size, pp_size, rank):
if pp_size == 1:
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
return '{}_{}_tp{}_pp{}_rank{}.engine'.format(model, dtype, tp_size,
pp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(engine)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size', type=int, default=1)
parser.add_argument('--tp_size', type=int, default=1)
parser.add_argument('--pp_size', type=int, default=1)
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--ft_model_dir', type=str, default=None)
parser.add_argument('--meta_ckpt_dir', type=str, default=None)
parser.add_argument('--quant_ckpt_path', type=str, default=None)
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help=
'The path of to read timing cache from, will be ignored if the file does not exist'
)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--vocab_size', type=int, default=32000)
parser.add_argument('--n_layer', type=int, default=32)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_embd', type=int, default=4096)
parser.add_argument('--n_head', type=int, default=32)
parser.add_argument('--n_kv_head', type=int, default=None)
parser.add_argument('--multiple_of', type=int, default=256)
parser.add_argument('--ffn_dim_multiplier', type=float, default=1.0)
parser.add_argument('--inter_size', type=int, default=None)
parser.add_argument('--hidden_act', type=str, default='silu')
parser.add_argument('--rms_norm_eps', type=float, default=1e-06)
parser.add_argument('--max_batch_size', type=int, default=8)
parser.add_argument('--max_input_len', type=int, default=2048)
parser.add_argument('--max_output_len', type=int, default=512)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument('--rotary_base', type=float, default=10000.0)
parser.add_argument('--rotary_scaling', nargs=2, type=str, default=None)
parser.add_argument('--use_gpt_attention_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--use_rmsnorm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32', 'bfloat16'])
parser.add_argument('--parallel_build', default=False, action='store_true')
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha_fp32_acc',
default=False,
action='store_true')
parser.add_argument(
'--multi_block_mode',
default=False,
action='store_true',
help=
'Split long kv sequence into multiple blocks (applied to generation MHA kernels). \
It is beneifical when batchxnum_heads cannot fully utilize GPU.'
)
parser.add_argument('--visualize', default=False, action='store_true')
parser.add_argument('--load_by_shard',
action='store_true',
help='Load a pretrained model shard-by-shard.')
parser.add_argument('--enable_debug_output',
default=False,
action='store_true')
parser.add_argument('--gpus_per_node', type=int, default=8)
parser.add_argument('--builder_opt', type=int, default=None)
parser.add_argument(
'--output_dir',
type=str,
default='engine_outputs',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
parser.add_argument(
'--use_fused_mlp',
default=False,
action='store_true',
help=
'Enable horizontal fusion in GatedMLP, reduces layer input traffic and potentially improves performance. '
'For FP8 PTQ, the downside is slight reduction of accuracy because one of the quantization scaling factors are discarded '
'(0.45734 vs 0.45755 for LLaMA-v2 7B using ammo/examples/hf/instruct_eval/mmlu.py).'
)
# Arguments related to the quantization of the model.
parser.add_argument(
'--use_smooth_quant',
default=False,
action="store_true",
help=
'Use the SmoothQuant method to quantize activations and weights for the various GEMMs.'
'See --per_channel and --per_token for finer-grained quantization options.'
)
parser.add_argument(
'--per_channel',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_token',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_group',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale weights in the int4 range. '
'per_group chooses at run time, and for each group, a custom scaling factor. '
'The flag is built for GPTQ/AWQ quantization.')
parser.add_argument('--group_size',
type=int,
default=128,
help='Group size used in GPTQ/AWQ quantization.')
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=1, # Meta does TP on hidden dim
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument(
'--enable_fp8',
default=False,
action='store_true',
help='Use FP8 Linear layer for Attention QKV/Dense and MLP.')
parser.add_argument(
'--fp8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. fp8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--quantized_fp8_model_path',
type=str,
default=None,
help='Path of a quantized model checkpoint in .npz format')
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--disable_weight_only_quant_plugin',
default=False,
action="store_true",
help=
'By default, using plugin implementation for weight quantization. Enabling disable_weight_only_quant_plugin flag will use ootb implementation instead of plugin.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4', 'int4_awq', 'int4_gptq'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--use_inflight_batching',
action="store_true",
default=False,
help="Activates inflight batching mode of gptAttentionPlugin.")
parser.add_argument(
'--paged_kv_cache',
action="store_true",
default=False,
help=
'By default we use contiguous KV cache. By setting this flag you enable paged KV cache'
)
parser.add_argument('--tokens_per_block',
type=int,
default=128,
help='Number of tokens per block in paged KV cache')
parser.add_argument(
'--max_num_tokens',
type=int,
default=None,
help='Define the max number of tokens supported by the engine')
parser.add_argument(
'--strongly_typed',
default=False,
action="store_true",
help=
'This option is introduced with trt 9.1.0.1+ and will reduce the building time significantly for fp8.'
)
parser.add_argument(
'--use_custom_all_reduce',
action='store_true',
help=
'Activates latency-optimized algorithm for all-reduce instead of NCCL.')
parser.add_argument(
'--max_prompt_embedding_table_size',
type=int,
default=0,
help='Setting to a value > 0 enables support for prompt tuning.')
parser.add_argument('--gather_all_token_logits',
action='store_true',
default=False)
parser.add_argument(
'--use_lora_plugin',
nargs='?',
const=None,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help="Activates the lora plugin which enables embedding sharing.")
parser.add_argument('--hf_lora_dir', type=str, default=None)
parser.add_argument(
'--moe_num_experts',
default=0,
type=int,
help='Specify the number of experts to use for MOE layers')
parser.add_argument(
'--moe_top_k',
default=0,
type=int,
help=
'Specify the top_k value to use for MOE layers. Default to 1 if --moe_num_experts is set'
)
parser.add_argument(
'--moe_tp_mode',
default=MoeConfig.ParallelismMode.TENSOR_PARALLEL,
type=int,
help=
'Controls how to distribute experts in TP. Check layers/moe.py for accepted values',
)
parser.add_argument(
'--moe_renorm_mode',
default=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
type=int,
help=
'Controls renormalization after gate logits. Check layers/moe.py for accepted values',
)
args = parser.parse_args()
logger.set_level(args.log_level)
assert not (
args.use_smooth_quant and args.use_weight_only
), "You cannot enable both SmoothQuant and INT8 weight-only together."
if not args.remove_input_padding:
if args.use_gpt_attention_plugin:
logger.warning(
f"It is recommended to specify --remove_input_padding when using GPT attention plugin"
)
if args.use_inflight_batching:
if not args.use_gpt_attention_plugin:
args.use_gpt_attention_plugin = 'float16'
logger.info(
f"Using GPT attention plugin for inflight batching mode. Setting to default '{args.use_gpt_attention_plugin}'"
)
if not args.remove_input_padding:
args.remove_input_padding = True
logger.info(
"Using remove input padding for inflight batching mode.")
if not args.paged_kv_cache:
args.paged_kv_cache = True
logger.info("Using paged KV cache for inflight batching mode.")
if args.use_smooth_quant:
args.quant_mode = QuantMode.use_smooth_quant(args.per_token,
args.per_channel)
elif args.use_weight_only:
args.quant_mode = QuantMode.from_description(
quantize_weights=True,
quantize_activations=False,
per_token=False,
per_channel=False,
per_group=args.per_group,
use_int4_weights="int4" in args.weight_only_precision)
else:
args.quant_mode = QuantMode(0)
if args.int8_kv_cache:
args.quant_mode = args.quant_mode.set_int8_kv_cache()
elif args.fp8_kv_cache:
args.quant_mode = args.quant_mode.set_fp8_kv_cache()
if args.enable_fp8:
args.quant_mode = args.quant_mode.set_fp8_qdq()
if args.rotary_scaling is not None:
assert args.use_gpt_attention_plugin, "RoPE scaling is only supported through GPT attention plugin."
rotary_scaling = {
"type": args.rotary_scaling[0],
"factor": float(args.rotary_scaling[1])
}
assert rotary_scaling["type"] in ["linear", "dynamic"]
assert rotary_scaling["factor"] > 1.0
args.rotary_scaling = rotary_scaling
if args.model_dir is not None:
hf_config = LlamaConfig.from_pretrained(args.model_dir)
args.inter_size = hf_config.intermediate_size # override the inter_size for LLaMA
args.n_embd = hf_config.hidden_size
args.n_head = hf_config.num_attention_heads
if hasattr(hf_config, "num_key_value_heads"):
args.n_kv_head = hf_config.num_key_value_heads
args.n_layer = hf_config.num_hidden_layers
args.n_positions = hf_config.max_position_embeddings
args.vocab_size = hf_config.vocab_size if hf_config.vocab_size is not None else args.vocab_size
args.hidden_act = hf_config.hidden_act
args.rms_norm_eps = hf_config.rms_norm_eps
# These attributes only exists with Mixtral, for the moment
args.moe_num_experts = getattr(hf_config, "num_local_experts",
args.moe_num_experts)
args.moe_top_k = getattr(hf_config, "num_experts_per_tok",
args.moe_top_k)
args.rotary_base = getattr(hf_config, "rope_theta", args.rotary_base)
args.model_type = hf_config.model_type
if hf_config.model_type == "mixtral":
# HF LLaMA-type models are implicitly using gated activation.
# With our MoE implementation, we must make it explicit
args.hidden_act = "swiglu"
elif args.meta_ckpt_dir is not None:
with open(Path(args.meta_ckpt_dir, "params.json")) as fp:
meta_config: dict = json.load(fp)
args.n_embd = meta_config["dim"]
args.n_head = meta_config["n_heads"]
args.n_layer = meta_config["n_layers"]
args.n_kv_head = meta_config.get("n_kv_heads", args.n_head)
if "hidden_dim" in meta_config:
args.inter_size = meta_config["hidden_dim"]
else:
args.multiple_of = meta_config.get("multiple_of", 1)
n_embd = int(4 * args.n_embd * 2 / 3)
args.ffn_dim_multiplier = meta_config.get("ffn_dim_multiplier", 1)
args.inter_size = args.multiple_of * (
(int(n_embd * args.ffn_dim_multiplier) + args.multiple_of - 1)
// args.multiple_of)
args.rms_norm_eps = meta_config["norm_eps"]
args.moe_num_experts = meta_config.get("moe", {}).get("num_experts", 0)
args.moe_top_k = meta_config.get("moe", {}).get("num_experts_per_tok",
0)
elif args.ft_model_dir is not None:
n_embd, n_head, n_layer, n_positions, vocab_size, hidden_act, inter_size, n_kv_head = parse_ft_config(
Path(args.ft_model_dir) / "config.ini")
args.inter_size = inter_size # override the inter_size for LLaMA
args.n_kv_head = n_kv_head
args.n_embd = n_embd
args.n_head = n_head
args.n_layer = n_layer
args.n_positions = n_positions
args.vocab_size = vocab_size if args.vocab_size is None else args.vocab_size
args.hidden_act = hidden_act
args.rms_norm_eps = 1e-06
logger.warning("Set rms_norm_eps to 1e-06 directly.")
if args.n_kv_head is None:
args.n_kv_head = args.n_head
elif args.n_kv_head != args.n_head:
assert (args.n_head % args.n_kv_head) == 0, \
"MQA/GQA requires the number of heads to be divisible by the number of K/V heads."
assert (args.n_kv_head % args.tp_size) == 0 or (args.tp_size % args.n_kv_head) == 0, \
"MQA/GQA requires either the number of K/V heads to be divisible by the tensor parallelism size OR " \
"the tensor parallelism size to be divisible by the number of K/V heads."
hf_modules_to_trtllm_modules = {
"q_proj": "attn_q",
"v_proj": "attn_k",
"k_proj": "attn_v",
"o_proj": "attn_dense",
"gate_proj": "mlp_h_to_4h",
"down_proj": "mlp_4h_to_h",
"up_proj": "mlp_gate"
} # lora modules on llama
lora_config = LoraConfig.from_hf(args.hf_lora_dir,
hf_modules_to_trtllm_modules)
if lora_config.is_valid:
args.vocab_size = lora_config.vocab_size
args.lora_config = lora_config
if args.weight_only_precision == 'int4_awq':
if args.vocab_size % 64 != 0:
args.vocab_size = int((args.vocab_size + 63) / 64) * 64
logger.info("To use awq we pad it to {}.".format(args.vocab_size))
assert args.pp_size * args.tp_size == args.world_size
if args.max_num_tokens is not None:
assert args.enable_context_fmha
assert (math.log2(args.tokens_per_block).is_integer()
), "tokens_per_block must be power of 2"
if args.enable_context_fmha or args.enable_context_fmha_fp32_acc:
assert (args.tokens_per_block >=
128), "Context fMHA requires >= 128 tokens per block"
if args.inter_size is None:
# this should not be need when loading a real model
# but it is helpful when creating a dummy model without loading any real weights
n_embd = int(4 * args.n_embd * 2 / 3)
args.inter_size = args.multiple_of * (
(int(n_embd * args.ffn_dim_multiplier) + args.multiple_of - 1) //
args.multiple_of)
logger.info(f"Setting inter_size to {args.inter_size}.")
if args.moe_num_experts and args.moe_top_k == 0:
args.moe_top_k = 1
args.moe_config = MoeConfig(args.moe_num_experts, args.moe_top_k,
args.moe_tp_mode,
args.moe_renorm_mode).validate()
return args
def build_rank_engine(builder: Builder,
builder_config: tensorrt_llm.builder.BuilderConfig,
engine_name, rank, args):
'''
@brief: Build the engine on the given rank.
@param rank: The rank to build the engine.
@param args: The cmd line arguments.
@return: The built engine.
'''
dtype = str_dtype_to_trt(args.dtype)
mapping = Mapping(world_size=args.world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size)
assert args.n_layer % args.pp_size == 0, \
f"num_layers {args.n_layer} must be a multiple of pipeline parallelism size {args.pp_size}"
profiler.print_memory_usage(f'Rank {rank} Engine build starts')
# Initialize Module
tensorrt_llm_llama = tensorrt_llm.models.LLaMAForCausalLM(
num_layers=args.n_layer,
num_heads=args.n_head,
num_kv_heads=args.n_kv_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
dtype=dtype,
mlp_hidden_size=args.inter_size,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
mapping=mapping,
rotary_base=args.rotary_base,
rotary_scaling=args.rotary_scaling,
use_parallel_embedding=args.use_parallel_embedding,
embedding_sharding_dim=args.embedding_sharding_dim,
quant_mode=args.quant_mode,
rms_norm_eps=args.rms_norm_eps,
use_fused_mlp=args.use_fused_mlp,
use_prompt_tuning=args.max_prompt_embedding_table_size > 0,
moe_config=args.moe_config)
quantize_kwargs = {}
if args.use_smooth_quant or args.use_weight_only:
if args.weight_only_precision == 'int4_awq':
quantize_kwargs = {
"group_size": args.group_size,
"zero": False,
"pre_quant_scale": True,
"exclude_modules": [],
}
elif args.weight_only_precision == 'int4_gptq':
quantize_kwargs = {
"group_size": args.group_size,
"zero": True,
"pre_quant_scale": False,
}
elif args.enable_fp8 or args.fp8_kv_cache:
logger.info(f'Loading scaling factors from '
f'{args.quantized_fp8_model_path}')
quant_scales = get_scaling_factors(args.quantized_fp8_model_path,
num_layers=args.n_layer,
quant_mode=args.quant_mode)
quantize_kwargs = {"quant_scales": quant_scales}
if args.use_weight_only and args.moe_config.has_moe():
if 'exclude_modules' in quantize_kwargs:
quantize_kwargs['exclude_modules'].append('router')
else:
quantize_kwargs['exclude_modules'] = ['lm_head', 'router']
tensorrt_llm_llama = quantize_model(tensorrt_llm_llama, args.quant_mode,
**quantize_kwargs)
if args.per_group:
load_func = load_from_awq_llama if args.weight_only_precision == 'int4_awq' else load_from_gptq_llama
load_func(tensorrt_llm_llama=tensorrt_llm_llama,
quant_ckpt_path=args.quant_ckpt_path,
mapping=mapping,
dtype=args.dtype,
ft_model_dir=args.ft_model_dir)
elif args.meta_ckpt_dir is not None:
load_from_meta_llama(tensorrt_llm_llama, args.meta_ckpt_dir, mapping,
args.dtype)
elif args.model_dir is not None:
logger.info(f'Loading HF LLaMA ... from {args.model_dir}')
tik = time.time()
if not args.load_by_shard:
hf_model = LlamaForCausalLM if args.model_type != "mixtral" else MixtralForCausalLM
hf_llama = hf_model.from_pretrained(
args.model_dir,
device_map={
"model": "cpu",
"lm_head": "cpu",
"embed_tokens": "cpu",
"layers": "cpu",
"norm": "cpu",
}, # Load to CPU memory
torch_dtype='auto',
)
use_gemm_woq_plugin = not args.disable_weight_only_quant_plugin
load_from_hf_llama(tensorrt_llm_llama,
hf_llama,
mapping=mapping,
dtype=args.dtype,
use_gemm_woq_plugin=use_gemm_woq_plugin,
lora_config=args.lora_config)
del hf_llama
else:
load_from_hf_checkpoint(tensorrt_llm_llama,
args.model_dir,
mapping,
dtype=args.dtype,
lora_config=args.lora_config)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'HF LLaMA loaded. Total time: {t}')
elif args.ft_model_dir is not None:
load_from_binary(tensorrt_llm_llama,
args.ft_model_dir,
mapping,
fp16=(args.dtype == 'float16'),
multi_query_mode=(args.n_kv_head != args.n_head))
profiler.print_memory_usage(f'Rank {rank} model weight loaded.')
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.use_gemm_plugin:
if not args.enable_fp8:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
else:
logger.info(
"Gemm plugin does not support FP8. Disabled Gemm plugin.")
if args.use_rmsnorm_plugin:
network.plugin_config.set_rmsnorm_plugin(dtype=args.use_rmsnorm_plugin)
if args.use_lora_plugin:
network.plugin_config.set_lora_plugin(dtype=args.use_lora_plugin)
# Quantization plugins.
if args.use_smooth_quant:
network.plugin_config.set_smooth_quant_gemm_plugin(dtype=args.dtype)
network.plugin_config.set_rmsnorm_quantization_plugin(dtype=args.dtype)
network.plugin_config.set_quantize_tensor_plugin()
network.plugin_config.set_quantize_per_token_plugin()
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.enable_context_fmha_fp32_acc:
network.plugin_config.set_context_fmha(
ContextFMHAType.enabled_with_fp32_acc)
if args.multi_block_mode:
network.plugin_config.enable_mmha_multi_block_mode()
if args.use_weight_only and not args.disable_weight_only_quant_plugin:
if args.per_group:
network.plugin_config.set_weight_only_groupwise_quant_matmul_plugin(
dtype='float16')
else:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype='float16')
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype,
args.use_custom_all_reduce)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if args.paged_kv_cache:
network.plugin_config.enable_paged_kv_cache(args.tokens_per_block)
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_llama.named_parameters())
# Forward
inputs = tensorrt_llm_llama.prepare_inputs(
args.max_batch_size,
args.max_input_len,
args.max_output_len,
True,
args.max_beam_width,
args.max_num_tokens,
prompt_embedding_table_size=args.max_prompt_embedding_table_size,
gather_all_token_logits=args.gather_all_token_logits,
lora_target_modules=args.lora_config.lora_target_modules)
tensorrt_llm_llama(*inputs)
if args.enable_debug_output:
# mark intermediate nodes' outputs
for k, v in tensorrt_llm_llama.named_network_outputs():
v = v.trt_tensor
v.name = k
network.trt_network.mark_output(v)
v.dtype = dtype
if args.visualize:
model_path = os.path.join(args.output_dir, 'test.onnx')
to_onnx(network.trt_network, model_path)
tensorrt_llm.graph_rewriting.optimize(network)
engine = None
# Network -> Engine
engine = builder.build_engine(network, builder_config)
if rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder.save_config(builder_config, config_path)
return engine
def build(rank, args):
torch.cuda.set_device(rank % args.gpus_per_node)
logger.set_level(args.log_level)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# when doing serializing build, all ranks share one engine
builder = Builder()
cache = None
for cur_rank in range(args.world_size):
# skip other ranks if parallel_build is enabled
if args.parallel_build and cur_rank != rank:
continue
tik = time.time()
# NOTE: when only int8 kv cache is used together with paged kv cache no int8 tensors are exposed to TRT
int8_trt_flag = args.quant_mode.has_act_or_weight_quant() or (
not args.paged_kv_cache and args.quant_mode.has_int8_kv_cache())
builder_config = builder.create_builder_config(
name=MODEL_NAME,
precision=args.dtype,
timing_cache=args.timing_cache if cache is None else cache,
tensor_parallel=args.tp_size,
pipeline_parallel=args.pp_size,
parallel_build=args.parallel_build,
num_layers=args.n_layer,
num_heads=args.n_head,
num_kv_heads=args.n_kv_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
max_batch_size=args.max_batch_size,
max_beam_width=args.max_beam_width,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len,
max_num_tokens=args.max_num_tokens,
int8=int8_trt_flag,
quant_mode=args.quant_mode,
strongly_typed=args.strongly_typed,
opt_level=args.builder_opt,
max_prompt_embedding_table_size=args.
max_prompt_embedding_table_size,
gather_all_token_logits=args.gather_all_token_logits,
lora_target_modules=args.lora_config.lora_target_modules,
)
engine_name = get_engine_name(MODEL_NAME, args.dtype, args.tp_size,
args.pp_size, cur_rank)
engine = build_rank_engine(builder, builder_config, engine_name,
cur_rank, args)
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
local_num_kv_heads = (args.n_kv_head + args.world_size -
1) // args.world_size
kv_dtype = str_dtype_to_trt(args.dtype)
if args.quant_mode.has_int8_kv_cache():
kv_dtype = str_dtype_to_trt('int8')
elif args.quant_mode.has_fp8_kv_cache():
kv_dtype = str_dtype_to_trt('fp8')
profiler.check_gpt_mem_usage(
engine=engine,
kv_dtype=kv_dtype,
use_gpt_attention_plugin=args.use_gpt_attention_plugin,
paged_kv_cache=args.paged_kv_cache,
max_batch_size=args.max_batch_size,
max_beam_width=args.max_beam_width,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len,
local_num_kv_heads=local_num_kv_heads,
head_size=args.n_embd / args.n_head,
num_layers=args.n_layer)
if cur_rank == 0:
# Use in-memory timing cache for multiple builder passes.
if not args.parallel_build:
cache = builder_config.trt_builder_config.get_timing_cache()
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
del engine
profiler.print_memory_usage(f'Rank {cur_rank} Engine serialized')
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(
f'Rank {cur_rank} Engine build time: {t} - {tok - tik} (sec)')
if rank == 0:
ok = builder.save_timing_cache(
builder_config, os.path.join(args.output_dir, "model.cache"))
assert ok, "Failed to save timing cache."
if __name__ == '__main__':
args = parse_arguments()
tik = time.time()
if args.parallel_build and args.world_size > 1 and \
torch.cuda.device_count() >= args.world_size:
logger.warning(
f'Parallelly build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
)
mp.spawn(build, nprocs=args.world_size, args=(args, ))
else:
args.parallel_build = False
logger.info('Serially build TensorRT engines.')
build(0, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all {args.world_size} engines: {t}')