forked from Lightning-AI/litgpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadapter.py
284 lines (234 loc) · 11.6 KB
/
adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
import os
import sys
import time
from pathlib import Path
from typing import Dict, List, Tuple
import lightning as L
import torch
import torch_xla.core.xla_model as xm
from lightning.fabric.accelerators import XLAAccelerator
from lightning.fabric.loggers import CSVLogger
from lightning.fabric.strategies import XLAFSDPStrategy
from lightning.fabric.utilities import ThroughputMonitor, measure_flops
from litgpt.adapter import GPT, Block, Config, adapter_filter, mark_only_adapter_as_trainable
from litgpt.tokenizer import Tokenizer
from litgpt.utils import check_valid_checkpoint_dir, chunked_cross_entropy, estimate_flops, lazy_load, num_parameters
# support running without installing as a package
wd = Path(__file__).parents[3].resolve()
sys.path.append(str(wd))
from extensions.xla.generate.base import generate
from extensions.xla.scripts.prepare_alpaca import generate_prompt
from extensions.xla.utils import rank_print, sequential_load_and_fsdp_wrap
eval_interval = 200
save_interval = 200
eval_iters = 100
eval_max_new_tokens = 100
log_interval = 1
devices = XLAAccelerator.auto_device_count()
# the state of very large models will not fit on the system RAM, this flag can alleviate it by loading it on each rank
# sequentially
reduce_cpu_memory_usage_during_load = False
# Hyperparameters
learning_rate = 3e-3
batch_size = 4
micro_batch_size = batch_size
gradient_accumulation_iters = batch_size // micro_batch_size
assert gradient_accumulation_iters > 0
epoch_size = 50000 # train dataset size
num_epochs = 5
max_iters = num_epochs * (epoch_size // micro_batch_size) // devices
weight_decay = 0.02
warmup_steps = 2 * (epoch_size // micro_batch_size) // devices // gradient_accumulation_iters # 2 epochs
hparams = {k: v for k, v in locals().items() if isinstance(v, (int, float, str)) and not k.startswith("_")}
def setup(
*,
data_dir: Path = Path("data/alpaca"),
checkpoint_dir: Path = Path("checkpoints/tiiuae/falcon-7b"),
out_dir: Path = Path("out/adapter/alpaca"),
precision: str = "bf16-true",
) -> None:
if devices > 1:
strategy = XLAFSDPStrategy(
auto_wrap_policy={Block},
activation_checkpointing_policy={Block},
state_dict_type="full", # change to "sharded" in multi-host environments where the filesystem is not shared
sequential_save=True,
)
else:
strategy = "auto"
logger = CSVLogger(out_dir.parent, out_dir.name, flush_logs_every_n_steps=log_interval)
fabric = L.Fabric(devices=devices, strategy=strategy, precision=precision, loggers=logger)
rank_print(fabric, hparams)
fabric.launch(main, data_dir, checkpoint_dir, out_dir)
def main(fabric: L.Fabric, data_dir: Path, checkpoint_dir: Path, out_dir: Path) -> None:
check_valid_checkpoint_dir(checkpoint_dir)
fabric.seed_everything(1337) # same seed for every process to init model (FSDP)
if fabric.global_rank == 0:
os.makedirs(out_dir, exist_ok=True)
train_data = torch.load(data_dir / "train.pt")
val_data = torch.load(data_dir / "test.pt")
config = Config.from_name(name=checkpoint_dir.name, adapter_start_layer=0)
checkpoint_path = checkpoint_dir / "lit_model.pth"
rank_print(fabric, f"Loading model {str(checkpoint_path)!r} with {config.__dict__}")
if reduce_cpu_memory_usage_during_load:
model = sequential_load_and_fsdp_wrap(fabric, lambda: GPT(config), checkpoint_path)
else:
with fabric.init_module(empty_init=False):
model = GPT(config)
checkpoint = lazy_load(checkpoint_path)
# strict=False because missing keys due to adapter weights not contained in state dict
model.load_state_dict(checkpoint, strict=False)
model = fabric.setup_module(model)
# mark as trainable only after sharding due to https://github.com/pytorch/xla/pull/5484
mark_only_adapter_as_trainable(model)
# these are not correct in the sharding case
rank_print(fabric, f"Number of trainable parameters: {num_parameters(model, requires_grad=True):,}")
rank_print(fabric, f"Number of non-trainable parameters: {num_parameters(model, requires_grad=False):,}")
trainable_params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(trainable_params, lr=learning_rate)
optimizer = fabric.setup_optimizers(optimizer)
fabric.seed_everything(1337 + fabric.global_rank)
train_time = time.perf_counter()
train(fabric, model, optimizer, train_data, val_data, checkpoint_dir, out_dir)
rank_print(fabric, f"Training time: {(time.perf_counter()-train_time):.2f}s")
# Save the final checkpoint at the end of training
save_path = out_dir / "lit_model_adapter_finetuned.pth"
save_adapter_checkpoint(fabric, model, save_path)
def train(
fabric: L.Fabric,
model: GPT,
optimizer: torch.optim.Optimizer,
train_data: List[Dict],
val_data: List[Dict],
checkpoint_dir: Path,
out_dir: Path,
) -> None:
tokenizer = Tokenizer(checkpoint_dir)
longest_seq_length = get_longest_seq_length(train_data)
model.max_seq_length = longest_seq_length
# to avoid recompilation, this script is configured to pad batches to the `longest_seq_length`
fabric.print(
f"The longest sequence length in the train data is {longest_seq_length}, the model's maximum sequence length is"
f" {model.max_seq_length} and context length is {model.config.block_size}"
)
with torch.device("meta"):
meta_model = GPT(model.config)
mark_only_adapter_as_trainable(meta_model)
# "estimated" is not as precise as "measured". Estimated is optimistic but widely used in the wild.
# When comparing MFU or FLOP numbers with other projects that use estimated FLOPs,
# consider passing `flops_per_batch=estimated_flops` instead
estimated_flops = estimate_flops(meta_model, training=True) * micro_batch_size
rank_print(fabric, f"Estimated TFLOPs: {estimated_flops * fabric.world_size / 1e12:.2f}")
# this assumes that all samples have a fixed length equal to the longest sequence length
# which is most likely false during finetuning
x = torch.randint(0, 1, (micro_batch_size, longest_seq_length))
forward_fn = lambda: meta_model(x)
loss_fn = lambda y: chunked_cross_entropy(y, x, chunk_size=0)
measured_flops = measure_flops(meta_model, forward_fn, loss_fn)
rank_print(fabric, f"Measured TFLOPs: {measured_flops * fabric.world_size / 1e12:.2f}")
del meta_model, x
throughput = ThroughputMonitor(fabric, window_size=50)
step_count = 0
total_t0 = time.perf_counter()
xm.mark_step()
for iter_num in range(1, max_iters + 1):
if step_count <= warmup_steps:
# linear warmup
lr = learning_rate * step_count / warmup_steps
for param_group in optimizer.param_groups:
param_group["lr"] = lr
iter_t0 = time.perf_counter()
input_ids, targets = get_batch(fabric, train_data, longest_seq_length)
is_accumulating = iter_num % gradient_accumulation_iters != 0
with fabric.no_backward_sync(model, enabled=is_accumulating):
logits = model(input_ids, lm_head_chunk_size=128)
xm.mark_step()
# shift the targets such that output n predicts token n+1
logits[-1] = logits[-1][..., :-1, :]
loss = chunked_cross_entropy(logits, targets[..., 1:])
fabric.backward(loss / gradient_accumulation_iters)
xm.mark_step()
if not is_accumulating:
optimizer.step()
optimizer.zero_grad()
step_count += 1
else:
xm.mark_step()
if iter_num % log_interval == 0:
t1 = time.perf_counter()
throughput.update(
time=t1 - total_t0,
batches=iter_num,
samples=iter_num * micro_batch_size,
lengths=iter_num * micro_batch_size * longest_seq_length,
flops=measured_flops * log_interval,
)
throughput.compute_and_log(step=iter_num)
rank_print(
fabric,
f"iter {iter_num} step {step_count}:"
# uncomment to print the loss. this will considerably slow down the iteration times
# + f" loss {loss.item():.4f},"
+ f" iter time: {(t1 - iter_t0) * 1000:.2f}ms" + (" (optimizer.step)" if not is_accumulating else ""),
)
if not is_accumulating and step_count % eval_interval == 0:
t0 = time.perf_counter()
val_loss = validate(fabric, model, val_data, tokenizer, longest_seq_length)
t1 = time.perf_counter() - t0
rank_print(fabric, f"step {iter_num}: val loss {val_loss.item():.4f}, val time: {t1 * 1000:.2f}ms")
fabric.barrier()
if not is_accumulating and step_count % save_interval == 0:
checkpoint_path = out_dir / f"iter-{iter_num:06d}-ckpt.pth"
save_adapter_checkpoint(fabric, model, checkpoint_path)
# xla does not support `inference_mode`: RuntimeError: Cannot set version_counter for inference tensor
@torch.no_grad()
def validate(
fabric: L.Fabric, model: GPT, val_data: List[Dict], tokenizer: Tokenizer, longest_seq_length: int
) -> torch.Tensor:
rank_print(fabric, "Validating ...")
model.eval()
losses = torch.zeros(eval_iters)
xm.mark_step()
for k in range(eval_iters):
input_ids, targets = get_batch(fabric, val_data, longest_seq_length)
logits = model(input_ids)
xm.mark_step()
losses[k] = chunked_cross_entropy(logits[..., :-1, :], targets[..., 1:], chunk_size=0)
val_loss = losses.mean()
# produce an example:
instruction = "Recommend a movie for me to watch during the weekend and explain the reason."
rank_print(fabric, instruction)
sample = {"instruction": instruction, "input": ""}
prompt = generate_prompt(sample)
encoded = tokenizer.encode(prompt, device=fabric.device)
with fabric.init_tensor():
# do not set `max_seq_length=max_returned_token` because memory is not a concern here
model.set_kv_cache(batch_size=1)
output = generate(model, encoded, max_returned_tokens=len(encoded) + eval_max_new_tokens, temperature=0.8)
model.clear_kv_cache()
output = tokenizer.decode(output)
rank_print(fabric, output)
model.train()
return val_loss
def get_batch(fabric: L.Fabric, data: List[Dict], longest_seq_length: int) -> Tuple[torch.Tensor, torch.Tensor]:
ix = torch.randint(len(data), (micro_batch_size,))
input_ids = [data[i]["input_ids"].type(torch.int64) for i in ix]
labels = [data[i]["labels"].type(torch.int64) for i in ix]
def pad_right(x, pad_id):
# pad right using a fixed longest sequence length to avoid recompilation
n = longest_seq_length - len(x)
return torch.cat((x, torch.full((n,), pad_id, dtype=x.dtype)))
x = torch.stack([pad_right(x, pad_id=0) for x in input_ids])
y = torch.stack([pad_right(x, pad_id=-1) for x in labels])
x, y = fabric.to_device((x, y))
return x, y
def get_longest_seq_length(data: List[Dict]) -> int:
# find out the minimum max_seq_length required during fine-tuning (saves memory!)
return max(len(d["input_ids"]) for d in data)
def save_adapter_checkpoint(fabric: L.Fabric, model: torch.nn.Module, file_path: Path) -> None:
rank_print(fabric, f"Saving adapter weights to {str(file_path)!r}")
fabric.save(file_path, {"model": model}, filter={"model": adapter_filter})
if __name__ == "__main__":
from jsonargparse import CLI
CLI(setup)