From c2944eb37a736ffd4c51b697fefe5518d3653c2a Mon Sep 17 00:00:00 2001 From: Han Wang <92130845+wanghan-iapcm@users.noreply.github.com> Date: Sun, 20 Oct 2024 13:50:54 +0800 Subject: [PATCH 01/13] fix(pt): remove deprecating torch.norm (#4233) ## Summary by CodeRabbit - **Chores** - Updated the normalization method for improved consistency and potential optimization. - Minor code formatting adjustments for enhanced readability. - Ensured compatibility with existing function calls by preserving parameters and return types. Co-authored-by: Han Wang --- deepmd/pt/utils/nlist.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/deepmd/pt/utils/nlist.py b/deepmd/pt/utils/nlist.py index a4f81a23a5..1060b40ce1 100644 --- a/deepmd/pt/utils/nlist.py +++ b/deepmd/pt/utils/nlist.py @@ -457,7 +457,7 @@ def extend_coord_with_ghosts( xyz = xyz.view(-1, 3) xyz = xyz.to(device=device, non_blocking=True) # ns x 3 - shift_idx = xyz[torch.argsort(torch.norm(xyz, dim=1))] + shift_idx = xyz[torch.argsort(torch.linalg.norm(xyz, dim=-1))] ns, _ = shift_idx.shape nall = ns * nloc # nf x ns x 3 From b4701da450ac24df0771ed40b8490698ee26ed6b Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 22 Oct 2024 14:29:51 +0800 Subject: [PATCH 02/13] [pre-commit.ci] pre-commit autoupdate (#4235) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit updates: - [github.com/astral-sh/ruff-pre-commit: v0.6.9 → v0.7.0](https://github.com/astral-sh/ruff-pre-commit/compare/v0.6.9...v0.7.0) - [github.com/pre-commit/mirrors-clang-format: v19.1.1 → v19.1.2](https://github.com/pre-commit/mirrors-clang-format/compare/v19.1.1...v19.1.2) - [github.com/scop/pre-commit-shfmt: v3.9.0-1 → v3.10.0-1](https://github.com/scop/pre-commit-shfmt/compare/v3.9.0-1...v3.10.0-1) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- .pre-commit-config.yaml | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 6a1d303f64..30efa6b062 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -29,7 +29,7 @@ repos: exclude: ^source/3rdparty - repo: https://github.com/astral-sh/ruff-pre-commit # Ruff version. - rev: v0.6.9 + rev: v0.7.0 hooks: - id: ruff args: ["--fix"] @@ -52,7 +52,7 @@ repos: - id: blacken-docs # C++ - repo: https://github.com/pre-commit/mirrors-clang-format - rev: v19.1.1 + rev: v19.1.2 hooks: - id: clang-format exclude: ^(source/3rdparty|source/lib/src/gpu/cudart/.+\.inc|.+\.ipynb$) @@ -66,7 +66,7 @@ repos: exclude: ^(source/3rdparty|\.github/workflows|\.clang-format) # Shell - repo: https://github.com/scop/pre-commit-shfmt - rev: v3.9.0-1 + rev: v3.10.0-1 hooks: - id: shfmt # CMake From c2515eda6255f499f624fe9ea2cadbe35e486c22 Mon Sep 17 00:00:00 2001 From: Jinzhe Zeng Date: Tue, 22 Oct 2024 22:02:43 -0400 Subject: [PATCH 03/13] feat(jax): energy model (no grad support) (#4226) Add JAX energy model without grad support. The grad support needs discussion. Array API is not supported in this PR as it needs more effort. (JAX has more APIs than Array API) This PR also fixes a `skip_tf` bug introduced in #3357. When no `@property` was added, `xx.skip_tf` is always cast to `True`. ## Summary by CodeRabbit ## Release Notes - **New Features** - Enhanced `BaseAtomicModel` and `DPAtomicModel` classes with improved array compatibility and new output definitions. - Introduced new classes and attributes for better model flexibility and customization. - Added `EnergyFittingNet` and `DOSFittingNet` for advanced fitting capabilities. - New functions `get_standard_model` and `get_model` for flexible model creation based on input data. - Added `BaseDescriptor` and `BaseFitting` classes to streamline descriptor and fitting processes. - Introduced `EnergyModel` class for improved atomic model handling. - **Bug Fixes** - Updated serialization logic for consistency across models. - **Tests** - Enhanced testing framework to support JAX operations and added methods for JAX model evaluation. --------- Signed-off-by: Jinzhe Zeng --- .../dpmodel/atomic_model/base_atomic_model.py | 20 +++--- .../dpmodel/atomic_model/dp_atomic_model.py | 10 ++- deepmd/dpmodel/model/make_model.py | 35 +++++------ deepmd/dpmodel/model/transform_output.py | 4 +- deepmd/jax/atomic_model/__init__.py | 1 + deepmd/jax/atomic_model/base_atomic_model.py | 18 ++++++ deepmd/jax/atomic_model/dp_atomic_model.py | 30 +++++++++ deepmd/jax/descriptor/__init__.py | 11 ++++ deepmd/jax/descriptor/base_descriptor.py | 9 +++ deepmd/jax/descriptor/dpa1.py | 5 ++ deepmd/jax/descriptor/se_e2_a.py | 5 ++ deepmd/jax/fitting/__init__.py | 9 +++ deepmd/jax/fitting/base_fitting.py | 9 +++ deepmd/jax/fitting/fitting.py | 5 ++ deepmd/jax/model/__init__.py | 6 ++ deepmd/jax/model/base_model.py | 6 ++ deepmd/jax/model/ener_model.py | 24 +++++++ deepmd/jax/model/model.py | 63 +++++++++++++++++++ source/tests/consistent/model/common.py | 23 +++++++ source/tests/consistent/model/test_ener.py | 26 ++++++++ 20 files changed, 289 insertions(+), 30 deletions(-) create mode 100644 deepmd/jax/atomic_model/__init__.py create mode 100644 deepmd/jax/atomic_model/base_atomic_model.py create mode 100644 deepmd/jax/atomic_model/dp_atomic_model.py create mode 100644 deepmd/jax/descriptor/base_descriptor.py create mode 100644 deepmd/jax/fitting/base_fitting.py create mode 100644 deepmd/jax/model/__init__.py create mode 100644 deepmd/jax/model/base_model.py create mode 100644 deepmd/jax/model/ener_model.py create mode 100644 deepmd/jax/model/model.py diff --git a/deepmd/dpmodel/atomic_model/base_atomic_model.py b/deepmd/dpmodel/atomic_model/base_atomic_model.py index c29a76b3f1..6307b19f41 100644 --- a/deepmd/dpmodel/atomic_model/base_atomic_model.py +++ b/deepmd/dpmodel/atomic_model/base_atomic_model.py @@ -1,13 +1,15 @@ # SPDX-License-Identifier: LGPL-3.0-or-later -import copy +import math from typing import ( Optional, ) +import array_api_compat import numpy as np from deepmd.dpmodel.common import ( NativeOP, + to_numpy_array, ) from deepmd.dpmodel.output_def import ( FittingOutputDef, @@ -172,17 +174,18 @@ def forward_common_atomic( ret_dict["mask"][ff,ii] == 0 indicating the ii-th atom of the ff-th frame is virtual. """ + xp = array_api_compat.array_namespace(extended_coord, extended_atype, nlist) _, nloc, _ = nlist.shape atype = extended_atype[:, :nloc] if self.pair_excl is not None: pair_mask = self.pair_excl.build_type_exclude_mask(nlist, extended_atype) # exclude neighbors in the nlist - nlist = np.where(pair_mask == 1, nlist, -1) + nlist = xp.where(pair_mask == 1, nlist, -1) ext_atom_mask = self.make_atom_mask(extended_atype) ret_dict = self.forward_atomic( extended_coord, - np.where(ext_atom_mask, extended_atype, 0), + xp.where(ext_atom_mask, extended_atype, 0), nlist, mapping=mapping, fparam=fparam, @@ -191,13 +194,13 @@ def forward_common_atomic( ret_dict = self.apply_out_stat(ret_dict, atype) # nf x nloc - atom_mask = ext_atom_mask[:, :nloc].astype(np.int32) + atom_mask = ext_atom_mask[:, :nloc].astype(xp.int32) if self.atom_excl is not None: atom_mask *= self.atom_excl.build_type_exclude_mask(atype) for kk in ret_dict.keys(): out_shape = ret_dict[kk].shape - out_shape2 = np.prod(out_shape[2:]) + out_shape2 = math.prod(out_shape[2:]) ret_dict[kk] = ( ret_dict[kk].reshape([out_shape[0], out_shape[1], out_shape2]) * atom_mask[:, :, None] @@ -232,14 +235,15 @@ def serialize(self) -> dict: "rcond": self.rcond, "preset_out_bias": self.preset_out_bias, "@variables": { - "out_bias": self.out_bias, - "out_std": self.out_std, + "out_bias": to_numpy_array(self.out_bias), + "out_std": to_numpy_array(self.out_std), }, } @classmethod def deserialize(cls, data: dict) -> "BaseAtomicModel": - data = copy.deepcopy(data) + # do not deep copy Descriptor and Fitting class + data = data.copy() variables = data.pop("@variables") obj = cls(**data) for kk in variables.keys(): diff --git a/deepmd/dpmodel/atomic_model/dp_atomic_model.py b/deepmd/dpmodel/atomic_model/dp_atomic_model.py index 7e576eb484..fe049021fe 100644 --- a/deepmd/dpmodel/atomic_model/dp_atomic_model.py +++ b/deepmd/dpmodel/atomic_model/dp_atomic_model.py @@ -169,14 +169,20 @@ def serialize(self) -> dict: ) return dd + # for subclass overriden + base_descriptor_cls = BaseDescriptor + """The base descriptor class.""" + base_fitting_cls = BaseFitting + """The base fitting class.""" + @classmethod def deserialize(cls, data) -> "DPAtomicModel": data = copy.deepcopy(data) check_version_compatibility(data.pop("@version", 1), 2, 2) data.pop("@class") data.pop("type") - descriptor_obj = BaseDescriptor.deserialize(data.pop("descriptor")) - fitting_obj = BaseFitting.deserialize(data.pop("fitting")) + descriptor_obj = cls.base_descriptor_cls.deserialize(data.pop("descriptor")) + fitting_obj = cls.base_fitting_cls.deserialize(data.pop("fitting")) data["descriptor"] = descriptor_obj data["fitting"] = fitting_obj obj = super().deserialize(data) diff --git a/deepmd/dpmodel/model/make_model.py b/deepmd/dpmodel/model/make_model.py index 8cdb7e1f25..dc90f10da7 100644 --- a/deepmd/dpmodel/model/make_model.py +++ b/deepmd/dpmodel/model/make_model.py @@ -3,6 +3,7 @@ Optional, ) +import array_api_compat import numpy as np from deepmd.dpmodel.atomic_model.base_atomic_model import ( @@ -75,7 +76,8 @@ def __init__( else: self.atomic_model: T_AtomicModel = T_AtomicModel(*args, **kwargs) self.precision_dict = PRECISION_DICT - self.reverse_precision_dict = RESERVED_PRECISON_DICT + # not supported by flax + # self.reverse_precision_dict = RESERVED_PRECISON_DICT self.global_np_float_precision = GLOBAL_NP_FLOAT_PRECISION self.global_ener_float_precision = GLOBAL_ENER_FLOAT_PRECISION @@ -253,9 +255,7 @@ def input_type_cast( str, ]: """Cast the input data to global float type.""" - input_prec = self.reverse_precision_dict[ - self.precision_dict[coord.dtype.name] - ] + input_prec = RESERVED_PRECISON_DICT[self.precision_dict[coord.dtype.name]] ### ### type checking would not pass jit, convert to coord prec anyway ### @@ -264,10 +264,7 @@ def input_type_cast( for vv in [box, fparam, aparam] ] box, fparam, aparam = _lst - if ( - input_prec - == self.reverse_precision_dict[self.global_np_float_precision] - ): + if input_prec == RESERVED_PRECISON_DICT[self.global_np_float_precision]: return coord, box, fparam, aparam, input_prec else: pp = self.global_np_float_precision @@ -286,8 +283,7 @@ def output_type_cast( ) -> dict[str, np.ndarray]: """Convert the model output to the input prec.""" do_cast = ( - input_prec - != self.reverse_precision_dict[self.global_np_float_precision] + input_prec != RESERVED_PRECISON_DICT[self.global_np_float_precision] ) pp = self.precision_dict[input_prec] odef = self.model_output_def() @@ -366,6 +362,7 @@ def _format_nlist( nnei: int, extra_nlist_sort: bool = False, ): + xp = array_api_compat.array_namespace(extended_coord, nlist) n_nf, n_nloc, n_nnei = nlist.shape extended_coord = extended_coord.reshape([n_nf, -1, 3]) nall = extended_coord.shape[1] @@ -373,10 +370,10 @@ def _format_nlist( if n_nnei < nnei: # make a copy before revise - ret = np.concatenate( + ret = xp.concat( [ nlist, - -1 * np.ones([n_nf, n_nloc, nnei - n_nnei], dtype=nlist.dtype), + -1 * xp.ones([n_nf, n_nloc, nnei - n_nnei], dtype=nlist.dtype), ], axis=-1, ) @@ -385,16 +382,16 @@ def _format_nlist( n_nf, n_nloc, n_nnei = nlist.shape # make a copy before revise m_real_nei = nlist >= 0 - ret = np.where(m_real_nei, nlist, 0) + ret = xp.where(m_real_nei, nlist, 0) coord0 = extended_coord[:, :n_nloc, :] index = ret.reshape(n_nf, n_nloc * n_nnei, 1).repeat(3, axis=2) - coord1 = np.take_along_axis(extended_coord, index, axis=1) + coord1 = xp.take_along_axis(extended_coord, index, axis=1) coord1 = coord1.reshape(n_nf, n_nloc, n_nnei, 3) - rr = np.linalg.norm(coord0[:, :, None, :] - coord1, axis=-1) - rr = np.where(m_real_nei, rr, float("inf")) - rr, ret_mapping = np.sort(rr, axis=-1), np.argsort(rr, axis=-1) - ret = np.take_along_axis(ret, ret_mapping, axis=2) - ret = np.where(rr > rcut, -1, ret) + rr = xp.linalg.norm(coord0[:, :, None, :] - coord1, axis=-1) + rr = xp.where(m_real_nei, rr, float("inf")) + rr, ret_mapping = xp.sort(rr, axis=-1), xp.argsort(rr, axis=-1) + ret = xp.take_along_axis(ret, ret_mapping, axis=2) + ret = xp.where(rr > rcut, -1, ret) ret = ret[..., :nnei] # not extra_nlist_sort and n_nnei <= nnei: elif n_nnei == nnei: diff --git a/deepmd/dpmodel/model/transform_output.py b/deepmd/dpmodel/model/transform_output.py index 43c275b1be..928c33f3bd 100644 --- a/deepmd/dpmodel/model/transform_output.py +++ b/deepmd/dpmodel/model/transform_output.py @@ -1,5 +1,6 @@ # SPDX-License-Identifier: LGPL-3.0-or-later +import array_api_compat import numpy as np from deepmd.dpmodel.common import ( @@ -23,6 +24,7 @@ def fit_output_to_model_output( the model output. """ + xp = array_api_compat.get_namespace(coord_ext) model_ret = dict(fit_ret.items()) for kk, vv in fit_ret.items(): vdef = fit_output_def[kk] @@ -31,7 +33,7 @@ def fit_output_to_model_output( if vdef.reducible: kk_redu = get_reduce_name(kk) # cast to energy prec brefore reduction - model_ret[kk_redu] = np.sum( + model_ret[kk_redu] = xp.sum( vv.astype(GLOBAL_ENER_FLOAT_PRECISION), axis=atom_axis ) if vdef.r_differentiable: diff --git a/deepmd/jax/atomic_model/__init__.py b/deepmd/jax/atomic_model/__init__.py new file mode 100644 index 0000000000..6ceb116d85 --- /dev/null +++ b/deepmd/jax/atomic_model/__init__.py @@ -0,0 +1 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later diff --git a/deepmd/jax/atomic_model/base_atomic_model.py b/deepmd/jax/atomic_model/base_atomic_model.py new file mode 100644 index 0000000000..90920879c2 --- /dev/null +++ b/deepmd/jax/atomic_model/base_atomic_model.py @@ -0,0 +1,18 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +from deepmd.jax.common import ( + to_jax_array, +) +from deepmd.jax.utils.exclude_mask import ( + AtomExcludeMask, + PairExcludeMask, +) + + +def base_atomic_model_set_attr(name, value): + if name in {"out_bias", "out_std"}: + value = to_jax_array(value) + elif name == "pair_excl" and value is not None: + value = PairExcludeMask(value.ntypes, value.exclude_types) + elif name == "atom_excl" and value is not None: + value = AtomExcludeMask(value.ntypes, value.exclude_types) + return value diff --git a/deepmd/jax/atomic_model/dp_atomic_model.py b/deepmd/jax/atomic_model/dp_atomic_model.py new file mode 100644 index 0000000000..077209e29a --- /dev/null +++ b/deepmd/jax/atomic_model/dp_atomic_model.py @@ -0,0 +1,30 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +from typing import ( + Any, +) + +from deepmd.dpmodel.atomic_model.dp_atomic_model import DPAtomicModel as DPAtomicModelDP +from deepmd.jax.atomic_model.base_atomic_model import ( + base_atomic_model_set_attr, +) +from deepmd.jax.common import ( + flax_module, +) +from deepmd.jax.descriptor.base_descriptor import ( + BaseDescriptor, +) +from deepmd.jax.fitting.base_fitting import ( + BaseFitting, +) + + +@flax_module +class DPAtomicModel(DPAtomicModelDP): + base_descriptor_cls = BaseDescriptor + """The base descriptor class.""" + base_fitting_cls = BaseFitting + """The base fitting class.""" + + def __setattr__(self, name: str, value: Any) -> None: + value = base_atomic_model_set_attr(name, value) + return super().__setattr__(name, value) diff --git a/deepmd/jax/descriptor/__init__.py b/deepmd/jax/descriptor/__init__.py index 6ceb116d85..ed59493268 100644 --- a/deepmd/jax/descriptor/__init__.py +++ b/deepmd/jax/descriptor/__init__.py @@ -1 +1,12 @@ # SPDX-License-Identifier: LGPL-3.0-or-later +from deepmd.jax.descriptor.dpa1 import ( + DescrptDPA1, +) +from deepmd.jax.descriptor.se_e2_a import ( + DescrptSeA, +) + +__all__ = [ + "DescrptSeA", + "DescrptDPA1", +] diff --git a/deepmd/jax/descriptor/base_descriptor.py b/deepmd/jax/descriptor/base_descriptor.py new file mode 100644 index 0000000000..7dec3cd6d4 --- /dev/null +++ b/deepmd/jax/descriptor/base_descriptor.py @@ -0,0 +1,9 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +from deepmd.dpmodel.descriptor.make_base_descriptor import ( + make_base_descriptor, +) +from deepmd.jax.env import ( + jnp, +) + +BaseDescriptor = make_base_descriptor(jnp.ndarray) diff --git a/deepmd/jax/descriptor/dpa1.py b/deepmd/jax/descriptor/dpa1.py index a9b0404970..0528e4bb93 100644 --- a/deepmd/jax/descriptor/dpa1.py +++ b/deepmd/jax/descriptor/dpa1.py @@ -16,6 +16,9 @@ flax_module, to_jax_array, ) +from deepmd.jax.descriptor.base_descriptor import ( + BaseDescriptor, +) from deepmd.jax.utils.exclude_mask import ( PairExcludeMask, ) @@ -76,6 +79,8 @@ def __setattr__(self, name: str, value: Any) -> None: return super().__setattr__(name, value) +@BaseDescriptor.register("dpa1") +@BaseDescriptor.register("se_atten") @flax_module class DescrptDPA1(DescrptDPA1DP): def __setattr__(self, name: str, value: Any) -> None: diff --git a/deepmd/jax/descriptor/se_e2_a.py b/deepmd/jax/descriptor/se_e2_a.py index a60a4e9af1..d1a6e9a8d9 100644 --- a/deepmd/jax/descriptor/se_e2_a.py +++ b/deepmd/jax/descriptor/se_e2_a.py @@ -8,6 +8,9 @@ flax_module, to_jax_array, ) +from deepmd.jax.descriptor.base_descriptor import ( + BaseDescriptor, +) from deepmd.jax.utils.exclude_mask import ( PairExcludeMask, ) @@ -16,6 +19,8 @@ ) +@BaseDescriptor.register("se_e2_a") +@BaseDescriptor.register("se_a") @flax_module class DescrptSeA(DescrptSeADP): def __setattr__(self, name: str, value: Any) -> None: diff --git a/deepmd/jax/fitting/__init__.py b/deepmd/jax/fitting/__init__.py index 6ceb116d85..e72314dcab 100644 --- a/deepmd/jax/fitting/__init__.py +++ b/deepmd/jax/fitting/__init__.py @@ -1 +1,10 @@ # SPDX-License-Identifier: LGPL-3.0-or-later +from deepmd.jax.fitting.fitting import ( + DOSFittingNet, + EnergyFittingNet, +) + +__all__ = [ + "EnergyFittingNet", + "DOSFittingNet", +] diff --git a/deepmd/jax/fitting/base_fitting.py b/deepmd/jax/fitting/base_fitting.py new file mode 100644 index 0000000000..fd9f3a416d --- /dev/null +++ b/deepmd/jax/fitting/base_fitting.py @@ -0,0 +1,9 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +from deepmd.dpmodel.fitting.make_base_fitting import ( + make_base_fitting, +) +from deepmd.jax.env import ( + jnp, +) + +BaseFitting = make_base_fitting(jnp.ndarray) diff --git a/deepmd/jax/fitting/fitting.py b/deepmd/jax/fitting/fitting.py index 284213c70a..f979db4d41 100644 --- a/deepmd/jax/fitting/fitting.py +++ b/deepmd/jax/fitting/fitting.py @@ -9,6 +9,9 @@ flax_module, to_jax_array, ) +from deepmd.jax.fitting.base_fitting import ( + BaseFitting, +) from deepmd.jax.utils.exclude_mask import ( AtomExcludeMask, ) @@ -33,6 +36,7 @@ def setattr_for_general_fitting(name: str, value: Any) -> Any: return value +@BaseFitting.register("ener") @flax_module class EnergyFittingNet(EnergyFittingNetDP): def __setattr__(self, name: str, value: Any) -> None: @@ -40,6 +44,7 @@ def __setattr__(self, name: str, value: Any) -> None: return super().__setattr__(name, value) +@BaseFitting.register("dos") @flax_module class DOSFittingNet(DOSFittingNetDP): def __setattr__(self, name: str, value: Any) -> None: diff --git a/deepmd/jax/model/__init__.py b/deepmd/jax/model/__init__.py new file mode 100644 index 0000000000..05a60c4ffe --- /dev/null +++ b/deepmd/jax/model/__init__.py @@ -0,0 +1,6 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +from .ener_model import ( + EnergyModel, +) + +__all__ = ["EnergyModel"] diff --git a/deepmd/jax/model/base_model.py b/deepmd/jax/model/base_model.py new file mode 100644 index 0000000000..fee4855da3 --- /dev/null +++ b/deepmd/jax/model/base_model.py @@ -0,0 +1,6 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +from deepmd.dpmodel.model.base_model import ( + make_base_model, +) + +BaseModel = make_base_model() diff --git a/deepmd/jax/model/ener_model.py b/deepmd/jax/model/ener_model.py new file mode 100644 index 0000000000..79c5a29e88 --- /dev/null +++ b/deepmd/jax/model/ener_model.py @@ -0,0 +1,24 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +from typing import ( + Any, +) + +from deepmd.dpmodel.model import EnergyModel as EnergyModelDP +from deepmd.jax.atomic_model.dp_atomic_model import ( + DPAtomicModel, +) +from deepmd.jax.common import ( + flax_module, +) +from deepmd.jax.model.base_model import ( + BaseModel, +) + + +@BaseModel.register("ener") +@flax_module +class EnergyModel(EnergyModelDP): + def __setattr__(self, name: str, value: Any) -> None: + if name == "atomic_model": + value = DPAtomicModel.deserialize(value.serialize()) + return super().__setattr__(name, value) diff --git a/deepmd/jax/model/model.py b/deepmd/jax/model/model.py new file mode 100644 index 0000000000..7fa3efda6e --- /dev/null +++ b/deepmd/jax/model/model.py @@ -0,0 +1,63 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +from copy import ( + deepcopy, +) + +from deepmd.jax.descriptor.base_descriptor import ( + BaseDescriptor, +) +from deepmd.jax.fitting.base_fitting import ( + BaseFitting, +) +from deepmd.jax.model.base_model import ( + BaseModel, +) + + +def get_standard_model(data: dict): + """Get a Model from a dictionary. + + Parameters + ---------- + data : dict + The data to construct the model. + """ + data = deepcopy(data) + descriptor_type = data["descriptor"].pop("type") + data["descriptor"]["type_map"] = data["type_map"] + fitting_type = data["fitting_net"].pop("type") + data["fitting_net"]["type_map"] = data["type_map"] + descriptor = BaseDescriptor.get_class_by_type(descriptor_type)( + **data["descriptor"], + ) + fitting = BaseFitting.get_class_by_type(fitting_type)( + ntypes=descriptor.get_ntypes(), + dim_descrpt=descriptor.get_dim_out(), + mixed_types=descriptor.mixed_types(), + **data["fitting_net"], + ) + return BaseModel.get_class_by_type(fitting_type)( + descriptor=descriptor, + fitting=fitting, + type_map=data["type_map"], + atom_exclude_types=data.get("atom_exclude_types", []), + pair_exclude_types=data.get("pair_exclude_types", []), + ) + + +def get_model(data: dict): + """Get a model from a dictionary. + + Parameters + ---------- + data : dict + The data to construct the model. + """ + model_type = data.get("type", "standard") + if model_type == "standard": + if "spin" in data: + raise NotImplementedError("Spin model is not implemented yet.") + else: + return get_standard_model(data) + else: + return BaseModel.get_class_by_type(model_type).get_model(data) diff --git a/source/tests/consistent/model/common.py b/source/tests/consistent/model/common.py index 294edec1d6..4112e09cff 100644 --- a/source/tests/consistent/model/common.py +++ b/source/tests/consistent/model/common.py @@ -6,8 +6,12 @@ from deepmd.common import ( make_default_mesh, ) +from deepmd.dpmodel.common import ( + to_numpy_array, +) from ..common import ( + INSTALLED_JAX, INSTALLED_PT, INSTALLED_TF, ) @@ -20,6 +24,11 @@ GLOBAL_TF_FLOAT_PRECISION, tf, ) +if INSTALLED_JAX: + from deepmd.jax.common import to_jax_array as numpy_to_jax + from deepmd.jax.env import ( + jnp, + ) class ModelTest: @@ -62,3 +71,17 @@ def eval_pt_model(self, pt_obj: Any, natoms, coords, atype, box) -> Any: box=numpy_to_torch(box), ).items() } + + def eval_jax_model(self, jax_obj: Any, natoms, coords, atype, box) -> Any: + def assert_jax_array(arr): + assert isinstance(arr, jnp.ndarray) or arr is None + return arr + + return { + kk: to_numpy_array(assert_jax_array(vv)) + for kk, vv in jax_obj( + numpy_to_jax(coords), + numpy_to_jax(atype), + box=numpy_to_jax(box), + ).items() + } diff --git a/source/tests/consistent/model/test_ener.py b/source/tests/consistent/model/test_ener.py index 692e1287dc..78a2aac703 100644 --- a/source/tests/consistent/model/test_ener.py +++ b/source/tests/consistent/model/test_ener.py @@ -13,6 +13,7 @@ ) from ..common import ( + INSTALLED_JAX, INSTALLED_PT, INSTALLED_TF, CommonTest, @@ -36,6 +37,12 @@ model_args, ) +if INSTALLED_JAX: + from deepmd.jax.model.ener_model import EnergyModel as EnergyModelJAX + from deepmd.jax.model.model import get_model as get_model_jax +else: + EnergyModelJAX = None + @parameterized( ( @@ -84,14 +91,20 @@ def data(self) -> dict: tf_class = EnergyModelTF dp_class = EnergyModelDP pt_class = EnergyModelPT + jax_class = EnergyModelJAX args = model_args() + @property def skip_tf(self): return ( self.data["pair_exclude_types"] != [] or self.data["atom_exclude_types"] != [] ) + @property + def skip_jax(self): + return not INSTALLED_JAX + def pass_data_to_cls(self, cls, data) -> Any: """Pass data to the class.""" data = data.copy() @@ -99,6 +112,8 @@ def pass_data_to_cls(self, cls, data) -> Any: return get_model_dp(data) elif cls is EnergyModelPT: return get_model_pt(data) + elif cls is EnergyModelJAX: + return get_model_jax(data) return cls(**data, **self.addtional_data) def setUp(self): @@ -168,6 +183,15 @@ def eval_pt(self, pt_obj: Any) -> Any: self.box, ) + def eval_jax(self, jax_obj: Any) -> Any: + return self.eval_jax_model( + jax_obj, + self.natoms, + self.coords, + self.atype, + self.box, + ) + def extract_ret(self, ret: Any, backend) -> tuple[np.ndarray, ...]: # shape not matched. ravel... if backend is self.RefBackend.DP: @@ -176,4 +200,6 @@ def extract_ret(self, ret: Any, backend) -> tuple[np.ndarray, ...]: return (ret["energy"].ravel(), ret["atom_energy"].ravel()) elif backend is self.RefBackend.TF: return (ret[0].ravel(), ret[1].ravel()) + elif backend is self.RefBackend.JAX: + return (ret["energy_redu"].ravel(), ret["energy"].ravel()) raise ValueError(f"Unknown backend: {backend}") From dccb0e58cac6079ce226c511aefcc0ee9a02a22c Mon Sep 17 00:00:00 2001 From: Jinzhe Zeng Date: Tue, 22 Oct 2024 22:38:00 -0400 Subject: [PATCH 04/13] docs: fix docs for CMAKE_ARGS (#4238) There is a typo. ## Summary by CodeRabbit - **Documentation** - Enhanced installation instructions for the DeePMD-kit, including detailed steps for setting environment variables. - Expanded section on installing the Python interface with commands for verifying TensorFlow and PyTorch installations. - Clarified installation instructions for Horovod and mpi4py, emphasizing environment variable usage. - Updated requirements for C++ interface installation, specifying necessary CMake versions for different backends. - Added new environment variables and detailed CMake configuration options for improved installation control. Signed-off-by: Jinzhe Zeng --- doc/install/install-from-source.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/install/install-from-source.md b/doc/install/install-from-source.md index 4079a8d424..3f65375865 100644 --- a/doc/install/install-from-source.md +++ b/doc/install/install-from-source.md @@ -198,7 +198,7 @@ Enable compilation optimization for the native machine's CPU type. Do not enable **Type**: string -Control high (double) or low (float) precision of training. +Additional CMake arguments. ::: :::{envvar} FLAGS From 911f41b4a08fd8787ca7dc469c69b158d5d48968 Mon Sep 17 00:00:00 2001 From: Jinzhe Zeng Date: Wed, 23 Oct 2024 00:28:58 -0400 Subject: [PATCH 05/13] fix(pt): set `weights_only=True` for `torch.load` (#4147) Fix #4143. ## Summary by CodeRabbit - **New Features** - Enhanced model loading efficiency by only loading model weights, which reduces memory usage and improves performance. - **Bug Fixes** - Streamlined the loading process across various components, ensuring that only essential model parameters are loaded, thus optimizing the overall functionality. - **Tests** - Updated tests to reflect the new loading behavior, ensuring that only model weights are loaded in various test scenarios for improved clarity and performance. --------- Signed-off-by: Jinzhe Zeng Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- deepmd/pt/entrypoints/main.py | 8 ++++++-- deepmd/pt/infer/deep_eval.py | 4 +++- deepmd/pt/infer/inference.py | 2 +- deepmd/pt/train/training.py | 4 +++- deepmd/pt/utils/finetune.py | 2 +- deepmd/pt/utils/serialization.py | 2 +- source/tests/pt/model/test_descriptor_dpa1.py | 10 ++++++---- source/tests/pt/model/test_descriptor_dpa2.py | 4 ++-- source/tests/pt/model/test_saveload_dpa1.py | 4 +++- source/tests/pt/model/test_saveload_se_e2_a.py | 4 +++- 10 files changed, 29 insertions(+), 15 deletions(-) diff --git a/deepmd/pt/entrypoints/main.py b/deepmd/pt/entrypoints/main.py index 7c8a95c5e7..71f81b0a12 100644 --- a/deepmd/pt/entrypoints/main.py +++ b/deepmd/pt/entrypoints/main.py @@ -283,7 +283,9 @@ def train( # update init_model or init_frz_model config if necessary if (init_model is not None or init_frz_model is not None) and use_pretrain_script: if init_model is not None: - init_state_dict = torch.load(init_model, map_location=DEVICE) + init_state_dict = torch.load( + init_model, map_location=DEVICE, weights_only=True + ) if "model" in init_state_dict: init_state_dict = init_state_dict["model"] config["model"] = init_state_dict["_extra_state"]["model_params"] @@ -380,7 +382,9 @@ def change_bias( output: Optional[str] = None, ): if input_file.endswith(".pt"): - old_state_dict = torch.load(input_file, map_location=env.DEVICE) + old_state_dict = torch.load( + input_file, map_location=env.DEVICE, weights_only=True + ) model_state_dict = copy.deepcopy(old_state_dict.get("model", old_state_dict)) model_params = model_state_dict["_extra_state"]["model_params"] elif input_file.endswith(".pth"): diff --git a/deepmd/pt/infer/deep_eval.py b/deepmd/pt/infer/deep_eval.py index 0a77a38135..acf985974c 100644 --- a/deepmd/pt/infer/deep_eval.py +++ b/deepmd/pt/infer/deep_eval.py @@ -103,7 +103,9 @@ def __init__( self.output_def = output_def self.model_path = model_file if str(self.model_path).endswith(".pt"): - state_dict = torch.load(model_file, map_location=env.DEVICE) + state_dict = torch.load( + model_file, map_location=env.DEVICE, weights_only=True + ) if "model" in state_dict: state_dict = state_dict["model"] self.input_param = state_dict["_extra_state"]["model_params"] diff --git a/deepmd/pt/infer/inference.py b/deepmd/pt/infer/inference.py index dfb7abdb21..b3d120cbc4 100644 --- a/deepmd/pt/infer/inference.py +++ b/deepmd/pt/infer/inference.py @@ -34,7 +34,7 @@ def __init__( - config: The Dict-like configuration with training options. """ # Model - state_dict = torch.load(model_ckpt, map_location=DEVICE) + state_dict = torch.load(model_ckpt, map_location=DEVICE, weights_only=True) if "model" in state_dict: state_dict = state_dict["model"] model_params = state_dict["_extra_state"]["model_params"] diff --git a/deepmd/pt/train/training.py b/deepmd/pt/train/training.py index 10e841682a..0f7c030a84 100644 --- a/deepmd/pt/train/training.py +++ b/deepmd/pt/train/training.py @@ -400,7 +400,9 @@ def get_lr(lr_params): optimizer_state_dict = None if resuming: log.info(f"Resuming from {resume_model}.") - state_dict = torch.load(resume_model, map_location=DEVICE) + state_dict = torch.load( + resume_model, map_location=DEVICE, weights_only=True + ) if "model" in state_dict: optimizer_state_dict = ( state_dict["optimizer"] if finetune_model is None else None diff --git a/deepmd/pt/utils/finetune.py b/deepmd/pt/utils/finetune.py index 2dd2230b54..96a420bf6a 100644 --- a/deepmd/pt/utils/finetune.py +++ b/deepmd/pt/utils/finetune.py @@ -136,7 +136,7 @@ def get_finetune_rules( Fine-tuning rules in a dict format, with `model_branch`: FinetuneRuleItem pairs. """ multi_task = "model_dict" in model_config - state_dict = torch.load(finetune_model, map_location=env.DEVICE) + state_dict = torch.load(finetune_model, map_location=env.DEVICE, weights_only=True) if "model" in state_dict: state_dict = state_dict["model"] last_model_params = state_dict["_extra_state"]["model_params"] diff --git a/deepmd/pt/utils/serialization.py b/deepmd/pt/utils/serialization.py index aab6d100a5..1c6ea096aa 100644 --- a/deepmd/pt/utils/serialization.py +++ b/deepmd/pt/utils/serialization.py @@ -33,7 +33,7 @@ def serialize_from_file(model_file: str) -> dict: model = get_model(model_def_script) model.load_state_dict(saved_model.state_dict()) elif model_file.endswith(".pt"): - state_dict = torch.load(model_file, map_location="cpu") + state_dict = torch.load(model_file, map_location="cpu", weights_only=True) if "model" in state_dict: state_dict = state_dict["model"] model_def_script = state_dict["_extra_state"]["model_params"] diff --git a/source/tests/pt/model/test_descriptor_dpa1.py b/source/tests/pt/model/test_descriptor_dpa1.py index 488cc2f7ff..a3d696516a 100644 --- a/source/tests/pt/model/test_descriptor_dpa1.py +++ b/source/tests/pt/model/test_descriptor_dpa1.py @@ -245,13 +245,15 @@ def test_descriptor_block(self): des = DescrptBlockSeAtten( **dparams, ).to(env.DEVICE) - des.load_state_dict(torch.load(self.file_model_param)) + des.load_state_dict(torch.load(self.file_model_param, weights_only=True)) coord = self.coord atype = self.atype box = self.cell # handel type_embedding type_embedding = TypeEmbedNet(ntypes, 8, use_tebd_bias=True).to(env.DEVICE) - type_embedding.load_state_dict(torch.load(self.file_type_embed)) + type_embedding.load_state_dict( + torch.load(self.file_type_embed, weights_only=True) + ) ## to save model parameters # torch.save(des.state_dict(), 'model_weights.pth') @@ -299,8 +301,8 @@ def test_descriptor(self): **dparams, ).to(env.DEVICE) target_dict = des.state_dict() - source_dict = torch.load(self.file_model_param) - type_embd_dict = torch.load(self.file_type_embed) + source_dict = torch.load(self.file_model_param, weights_only=True) + type_embd_dict = torch.load(self.file_type_embed, weights_only=True) target_dict = translate_se_atten_and_type_embd_dicts_to_dpa1( target_dict, source_dict, diff --git a/source/tests/pt/model/test_descriptor_dpa2.py b/source/tests/pt/model/test_descriptor_dpa2.py index ac04bfc417..17d609a2f9 100644 --- a/source/tests/pt/model/test_descriptor_dpa2.py +++ b/source/tests/pt/model/test_descriptor_dpa2.py @@ -123,10 +123,10 @@ def test_descriptor(self): **dparams, ).to(env.DEVICE) target_dict = des.state_dict() - source_dict = torch.load(self.file_model_param) + source_dict = torch.load(self.file_model_param, weights_only=True) # type_embd of repformer is removed source_dict.pop("type_embedding.embedding.embedding_net.layers.0.bias") - type_embd_dict = torch.load(self.file_type_embed) + type_embd_dict = torch.load(self.file_type_embed, weights_only=True) target_dict = translate_type_embd_dicts_to_dpa2( target_dict, source_dict, diff --git a/source/tests/pt/model/test_saveload_dpa1.py b/source/tests/pt/model/test_saveload_dpa1.py index 3da06938b5..5b2b6cd583 100644 --- a/source/tests/pt/model/test_saveload_dpa1.py +++ b/source/tests/pt/model/test_saveload_dpa1.py @@ -85,7 +85,9 @@ def get_model_result(self, read=False, model_file="tmp_model.pt"): optimizer = torch.optim.Adam(wrapper.parameters(), lr=self.start_lr) optimizer.zero_grad() if read: - wrapper.load_state_dict(torch.load(model_file, map_location=env.DEVICE)) + wrapper.load_state_dict( + torch.load(model_file, map_location=env.DEVICE, weights_only=True) + ) os.remove(model_file) else: torch.save(wrapper.state_dict(), model_file) diff --git a/source/tests/pt/model/test_saveload_se_e2_a.py b/source/tests/pt/model/test_saveload_se_e2_a.py index 56ea3283d9..d226f628bc 100644 --- a/source/tests/pt/model/test_saveload_se_e2_a.py +++ b/source/tests/pt/model/test_saveload_se_e2_a.py @@ -85,7 +85,9 @@ def get_model_result(self, read=False, model_file="tmp_model.pt"): optimizer = torch.optim.Adam(wrapper.parameters(), lr=self.start_lr) optimizer.zero_grad() if read: - wrapper.load_state_dict(torch.load(model_file, map_location=env.DEVICE)) + wrapper.load_state_dict( + torch.load(model_file, map_location=env.DEVICE, weights_only=True) + ) os.remove(model_file) else: torch.save(wrapper.state_dict(), model_file) From b8e57f2d87d2cf33f1c036992186a5fcb858c9df Mon Sep 17 00:00:00 2001 From: Jinzhe Zeng Date: Wed, 23 Oct 2024 05:07:30 -0400 Subject: [PATCH 06/13] docs: fix parameter links (#4239) It was forgotten in https://github.com/deepmodeling/deepmd-kit/pull/2549 ## Summary by CodeRabbit - **New Features** - Introduced the DPA-1 model with an attention mechanism for molecular simulation. - Added the `se_a_mask` descriptor for DP/MM simulations with dynamic atom counts. - Expanded support for multi-task fine-tuning in PyTorch. - **Documentation Enhancements** - Improved clarity and detail in various documents, including model compression, DPLR model training, and fine-tuning processes. - Updated references to follow a standardized format, enhancing navigation and understanding. - **Bug Fixes** - Corrected references and parameters across multiple documents to ensure accuracy in model configurations and training instructions. --------- Signed-off-by: Jinzhe Zeng Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- deepmd/utils/argcheck.py | 41 +++++++++++++++++-------------- doc/freeze/compress.md | 2 +- doc/model/dplr.md | 2 +- doc/model/dprc.md | 6 ++--- doc/model/overall.md | 2 +- doc/model/train-energy-spin.md | 4 +-- doc/model/train-energy.md | 8 +++--- doc/model/train-fitting-dos.md | 4 +-- doc/model/train-fitting-tensor.md | 4 +-- doc/model/train-hybrid.md | 2 +- doc/model/train-se-a-mask.md | 22 ++++++++--------- doc/model/train-se-atten.md | 24 +++++++++--------- doc/model/train-se-e2-a.md | 18 +++++++------- doc/model/train-se-e2-r.md | 4 +-- doc/model/train-se-e3-tebd.md | 4 +-- doc/model/train-se-e3.md | 4 +-- doc/train/finetuning.md | 2 +- doc/train/gpu-limitations.md | 2 +- doc/train/training-advanced.md | 2 +- 19 files changed, 80 insertions(+), 77 deletions(-) diff --git a/deepmd/utils/argcheck.py b/deepmd/utils/argcheck.py index 1a5e1cc3b2..b3f3b26fd0 100644 --- a/deepmd/utils/argcheck.py +++ b/deepmd/utils/argcheck.py @@ -1387,24 +1387,27 @@ def descrpt_se_a_mask_args(): def descrpt_variant_type_args(exclude_hybrid: bool = False) -> Variant: - link_lf = make_link("loc_frame", "model/descriptor[loc_frame]") - link_se_e2_a = make_link("se_e2_a", "model/descriptor[se_e2_a]") - link_se_e2_r = make_link("se_e2_r", "model/descriptor[se_e2_r]") - link_se_e3 = make_link("se_e3", "model/descriptor[se_e3]") - link_se_a_tpe = make_link("se_a_tpe", "model/descriptor[se_a_tpe]") - link_hybrid = make_link("hybrid", "model/descriptor[hybrid]") - link_se_atten = make_link("se_atten", "model/descriptor[se_atten]") - link_se_atten_v2 = make_link("se_atten_v2", "model/descriptor[se_atten_v2]") - doc_descrpt_type = "The type of the descritpor. See explanation below. \n\n\ -- `loc_frame`: Defines a local frame at each atom, and the compute the descriptor as local coordinates under this frame.\n\n\ -- `se_e2_a`: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor.\n\n\ -- `se_e2_r`: Used by the smooth edition of Deep Potential. Only the distance between atoms is used to construct the descriptor.\n\n\ -- `se_e3`: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Three-body embedding will be used by this descriptor.\n\n\ -- `se_a_tpe`: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Type embedding will be used by this descriptor.\n\n\ -- `se_atten`: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Attention mechanism will be used by this descriptor.\n\n\ -- `se_atten_v2`: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Attention mechanism with new modifications will be used by this descriptor.\n\n\ -- `se_a_mask`: Used by the smooth edition of Deep Potential. It can accept a variable number of atoms in a frame (Non-PBC system). *aparam* are required as an indicator matrix for the real/virtual sign of input atoms. \n\n\ -- `hybrid`: Concatenate of a list of descriptors as a new descriptor." + link_lf = make_link("loc_frame", "model[standard]/descriptor[loc_frame]") + link_se_e2_a = make_link("se_e2_a", "model[standard]/descriptor[se_e2_a]") + link_se_e2_r = make_link("se_e2_r", "model[standard]/descriptor[se_e2_r]") + link_se_e3 = make_link("se_e3", "model[standard]/descriptor[se_e3]") + link_se_a_tpe = make_link("se_a_tpe", "model[standard]/descriptor[se_a_tpe]") + link_hybrid = make_link("hybrid", "model[standard]/descriptor[hybrid]") + link_se_atten = make_link("se_atten", "model[standard]/descriptor[se_atten]") + link_se_atten_v2 = make_link( + "se_atten_v2", "model[standard]/descriptor[se_atten_v2]" + ) + link_se_a_mask = make_link("se_a_mask", "model[standard]/descriptor[se_a_mask]") + doc_descrpt_type = f"The type of the descritpor. See explanation below. \n\n\ +- {link_lf}: Defines a local frame at each atom, and the compute the descriptor as local coordinates under this frame.\n\n\ +- {link_se_e2_a}: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor.\n\n\ +- {link_se_e2_r}: Used by the smooth edition of Deep Potential. Only the distance between atoms is used to construct the descriptor.\n\n\ +- {link_se_e3}: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Three-body embedding will be used by this descriptor.\n\n\ +- {link_se_a_tpe}: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Type embedding will be used by this descriptor.\n\n\ +- {link_se_atten}: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Attention mechanism will be used by this descriptor.\n\n\ +- {link_se_atten_v2}: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Attention mechanism with new modifications will be used by this descriptor.\n\n\ +- {link_se_a_mask}: Used by the smooth edition of Deep Potential. It can accept a variable number of atoms in a frame (Non-PBC system). *aparam* are required as an indicator matrix for the real/virtual sign of input atoms. \n\n\ +- {link_hybrid}: Concatenate of a list of descriptors as a new descriptor." return Variant( "type", @@ -1692,7 +1695,7 @@ def fitting_variant_type_args(): # --- Modifier configurations: --- # def modifier_dipole_charge(): doc_model_name = "The name of the frozen dipole model file." - doc_model_charge_map = f"The charge of the WFCC. The list length should be the same as the {make_link('sel_type', 'model/fitting_net[dipole]/sel_type')}. " + doc_model_charge_map = f"The charge of the WFCC. The list length should be the same as the {make_link('sel_type', 'model[standard]/fitting_net[dipole]/sel_type')}. " doc_sys_charge_map = f"The charge of real atoms. The list length should be the same as the {make_link('type_map', 'model/type_map')}" doc_ewald_h = "The grid spacing of the FFT grid. Unit is A" doc_ewald_beta = f"The splitting parameter of Ewald sum. Unit is A^{-1}" diff --git a/doc/freeze/compress.md b/doc/freeze/compress.md index 3cce96c993..e26c85e45a 100644 --- a/doc/freeze/compress.md +++ b/doc/freeze/compress.md @@ -99,7 +99,7 @@ The model compression interface requires the version of DeePMD-kit used in the o Descriptors with `se_e2_a`, `se_e3`, `se_e2_r` and `se_atten_v2` types are supported by the model compression feature. `Hybrid` mixed with the above descriptors is also supported. -Notice: Model compression for the `se_atten_v2` descriptor is exclusively designed for models with the training parameter {ref}`attn_layer ` set to 0. +Notice: Model compression for the `se_atten_v2` descriptor is exclusively designed for models with the training parameter {ref}`attn_layer ` set to 0. **Available activation functions for descriptor:** diff --git a/doc/model/dplr.md b/doc/model/dplr.md index ec95f9f424..91c2251346 100644 --- a/doc/model/dplr.md +++ b/doc/model/dplr.md @@ -58,7 +58,7 @@ Two settings make the training input script different from an energy training in }, ``` -The type of fitting is set to {ref}`dipole `. The dipole is associated with type 0 atoms (oxygens), by the setting `"dipole_type": [0]`. What we trained is the displacement of the WC from the corresponding oxygen atom. It shares the same training input as the atomic dipole because both are 3-dimensional vectors defined on atoms. +The type of fitting is set to {ref}`dipole `. The dipole is associated with type 0 atoms (oxygens), by the setting `"dipole_type": [0]`. What we trained is the displacement of the WC from the corresponding oxygen atom. It shares the same training input as the atomic dipole because both are 3-dimensional vectors defined on atoms. The loss section is provided as follows ```json diff --git a/doc/model/dprc.md b/doc/model/dprc.md index 33dde237d7..d9ce24b600 100644 --- a/doc/model/dprc.md +++ b/doc/model/dprc.md @@ -140,7 +140,7 @@ As described in the paper, the DPRc model only corrects $E_\text{QM}$ and $E_\te :::: -{ref}`exclude_types ` can be generated by the following Python script: +{ref}`exclude_types ` can be generated by the following Python script: ```py from itertools import combinations_with_replacement, product @@ -163,7 +163,7 @@ print( ) ``` -Also, DPRc assumes MM atom energies ({ref}`atom_ener `) are zero: +Also, DPRc assumes MM atom energies ({ref}`atom_ener `) are zero: ```json "fitting_net": { @@ -173,7 +173,7 @@ Also, DPRc assumes MM atom energies ({ref}`atom_ener ` only works when {ref}`descriptor/set_davg_zero ` of the QM/MM part is `true`. +Note that {ref}`atom_ener ` only works when {ref}`descriptor/set_davg_zero ` of the QM/MM part is `true`. ## Run MD simulations diff --git a/doc/model/overall.md b/doc/model/overall.md index 102a8fc671..7f67c6545d 100644 --- a/doc/model/overall.md +++ b/doc/model/overall.md @@ -42,7 +42,7 @@ A model has two parts, a descriptor that maps atomic configuration to a set of s } ``` -The two subsections, {ref}`descriptor ` and {ref}`fitting_net `, define the descriptor and the fitting net, respectively. +The two subsections, {ref}`descriptor ` and {ref}`fitting_net `, define the descriptor and the fitting net, respectively. The {ref}`type_map ` is optional, which provides the element names (but not necessarily same as the actual name of the element) of the corresponding atom types. A water model, as in this example, has two kinds of atoms. The atom types are internally recorded as integers, e.g., `0` for oxygen and `1` for hydrogen here. A mapping from the atom type to their names is provided by {ref}`type_map `. diff --git a/doc/model/train-energy-spin.md b/doc/model/train-energy-spin.md index 9f4e3cf04b..ec169892f2 100644 --- a/doc/model/train-energy-spin.md +++ b/doc/model/train-energy-spin.md @@ -11,9 +11,9 @@ keeping other sections the same as the normal energy model's input script. Note that when adding spin into the model, there will be some implicit modifications automatically done by the program: - In the TensorFlow backend, the `se_e2_a` descriptor will treat those atom types with spin as new (virtual) types, - and duplicate their corresponding selected numbers of neighbors ({ref}`sel `) from their real atom types. + and duplicate their corresponding selected numbers of neighbors ({ref}`sel `) from their real atom types. - In the PyTorch backend, if spin settings are added, all the types (with or without spin) will have their virtual types. - The `se_e2_a` descriptor will thus double the {ref}`sel ` list, + The `se_e2_a` descriptor will thus double the {ref}`sel ` list, while in other descriptors with mixed types (such as `dpa1` or `dpa2`), the sel number will not be changed for clarity. If you are using descriptors with mixed types, to achieve better performance, you should manually extend your sel number (maybe double) depending on the balance between performance and efficiency. diff --git a/doc/model/train-energy.md b/doc/model/train-energy.md index c1da1f4c1f..75d31d4670 100644 --- a/doc/model/train-energy.md +++ b/doc/model/train-energy.md @@ -79,7 +79,7 @@ Benefiting from the relative force loss, small forces can be fitted more accurat ## The fitting network -The construction of the fitting net is given by section {ref}`fitting_net ` +The construction of the fitting net is given by section {ref}`fitting_net ` ```json "fitting_net" : { @@ -89,9 +89,9 @@ The construction of the fitting net is given by section {ref}`fitting_net ` specifies the size of the fitting net. If two neighboring layers are of the same size, then a [ResNet architecture](https://arxiv.org/abs/1512.03385) is built between them. -- If the option {ref}`resnet_dt ` is set to `true`, then a timestep is used in the ResNet. -- {ref}`seed ` gives the random seed that is used to generate random numbers when initializing the model parameters. +- {ref}`neuron ` specifies the size of the fitting net. If two neighboring layers are of the same size, then a [ResNet architecture](https://arxiv.org/abs/1512.03385) is built between them. +- If the option {ref}`resnet_dt ` is set to `true`, then a timestep is used in the ResNet. +- {ref}`seed ` gives the random seed that is used to generate random numbers when initializing the model parameters. ## Loss diff --git a/doc/model/train-fitting-dos.md b/doc/model/train-fitting-dos.md index 4c4366a1e1..d04dbc669c 100644 --- a/doc/model/train-fitting-dos.md +++ b/doc/model/train-fitting-dos.md @@ -16,11 +16,11 @@ $deepmd_source_dir/examples/dos/input.json The training and validation data are also provided our examples. But note that **the data provided along with the examples are of limited amount, and should not be used to train a production model.** -Similar to the `input.json` used in `ener` mode, training JSON is also divided into {ref}`model `, {ref}`learning_rate `, {ref}`loss ` and {ref}`training `. Most keywords remain the same as `ener` mode, and their meaning can be found [here](train-se-e2-a.md). To fit the `dos`, one needs to modify {ref}`model/fitting_net ` and {ref}`loss `. +Similar to the `input.json` used in `ener` mode, training JSON is also divided into {ref}`model `, {ref}`learning_rate `, {ref}`loss ` and {ref}`training `. Most keywords remain the same as `ener` mode, and their meaning can be found [here](train-se-e2-a.md). To fit the `dos`, one needs to modify {ref}`model[standard]/fitting_net ` and {ref}`loss `. ## The fitting Network -The {ref}`fitting_net ` section tells DP which fitting net to use. +The {ref}`fitting_net ` section tells DP which fitting net to use. The JSON of `dos` type should be provided like diff --git a/doc/model/train-fitting-tensor.md b/doc/model/train-fitting-tensor.md index 4d5cb22707..c6b54c69ef 100644 --- a/doc/model/train-fitting-tensor.md +++ b/doc/model/train-fitting-tensor.md @@ -30,7 +30,7 @@ $deepmd_source_dir/examples/water_tensor/polar/polar_input_torch.json The training and validation data are also provided our examples. But note that **the data provided along with the examples are of limited amount, and should not be used to train a production model.** -Similar to the `input.json` used in `ener` mode, training JSON is also divided into {ref}`model `, {ref}`learning_rate `, {ref}`loss ` and {ref}`training `. Most keywords remain the same as `ener` mode, and their meaning can be found [here](train-se-e2-a.md). To fit a tensor, one needs to modify {ref}`model/fitting_net ` and {ref}`loss `. +Similar to the `input.json` used in `ener` mode, training JSON is also divided into {ref}`model `, {ref}`learning_rate `, {ref}`loss ` and {ref}`training `. Most keywords remain the same as `ener` mode, and their meaning can be found [here](train-se-e2-a.md). To fit a tensor, one needs to modify {ref}`model[standard]/fitting_net ` and {ref}`loss `. ## Theory @@ -72,7 +72,7 @@ The tensorial models can be used to calculate IR spectrum and Raman spectrum.[^1 ## The fitting Network -The {ref}`fitting_net ` section tells DP which fitting net to use. +The {ref}`fitting_net ` section tells DP which fitting net to use. ::::{tab-set} diff --git a/doc/model/train-hybrid.md b/doc/model/train-hybrid.md index c0a55d9eb5..1219d208a7 100644 --- a/doc/model/train-hybrid.md +++ b/doc/model/train-hybrid.md @@ -25,7 +25,7 @@ This way, one can set the different cutoff radii for different descriptors.[^1] ## Instructions -To use the descriptor in DeePMD-kit, one firstly set the {ref}`type ` to {ref}`hybrid `, then provide the definitions of the descriptors by the items in the `list`, +To use the descriptor in DeePMD-kit, one firstly set the {ref}`type ` to {ref}`hybrid `, then provide the definitions of the descriptors by the items in the `list`, ```json "descriptor" :{ diff --git a/doc/model/train-se-a-mask.md b/doc/model/train-se-a-mask.md index 6757fbefbd..69f344b138 100644 --- a/doc/model/train-se-a-mask.md +++ b/doc/model/train-se-a-mask.md @@ -29,7 +29,7 @@ A complete training input script of this example can be found in the directory. $deepmd_source_dir/examples/zinc_protein/zinc_se_a_mask.json ``` -The construction of the descriptor is given by section {ref}`descriptor `. An example of the descriptor is provided as follows +The construction of the descriptor is given by section {ref}`descriptor `. An example of the descriptor is provided as follows ```json "descriptor" :{ @@ -43,13 +43,13 @@ The construction of the descriptor is given by section {ref}`descriptor ` of the descriptor is set to `"se_a_mask"`. -- {ref}`sel ` gives the maximum number of atoms in input coordinates. It is a list, the length of which is the same as the number of atom types in the system, and `sel[i]` denotes the maximum number of atoms with type `i`. -- The {ref}`neuron ` specifies the size of the embedding net. From left to right the members denote the sizes of each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size of the inner layer, then the inner layer is copied and concatenated, then a [ResNet architecture](https://arxiv.org/abs/1512.03385) is built between them. -- The {ref}`axis_neuron ` specifies the size of the submatrix of the embedding matrix, the axis matrix as explained in the [DeepPot-SE paper](https://arxiv.org/abs/1805.09003) -- If the option {ref}`type_one_side ` is set to `true`, the embedding network parameters vary by types of neighbor atoms only, so there will be $N_\text{types}$ sets of embedding network parameters. Otherwise, the embedding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be $N_\text{types}^2$ sets of embedding network parameters. -- If the option {ref}`resnet_dt ` is set to `true`, then a timestep is used in the ResNet. -- {ref}`seed ` gives the random seed that is used to generate random numbers when initializing the model parameters. +- The {ref}`type ` of the descriptor is set to `"se_a_mask"`. +- {ref}`sel ` gives the maximum number of atoms in input coordinates. It is a list, the length of which is the same as the number of atom types in the system, and `sel[i]` denotes the maximum number of atoms with type `i`. +- The {ref}`neuron ` specifies the size of the embedding net. From left to right the members denote the sizes of each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size of the inner layer, then the inner layer is copied and concatenated, then a [ResNet architecture](https://arxiv.org/abs/1512.03385) is built between them. +- The {ref}`axis_neuron ` specifies the size of the submatrix of the embedding matrix, the axis matrix as explained in the [DeepPot-SE paper](https://arxiv.org/abs/1805.09003) +- If the option {ref}`type_one_side ` is set to `true`, the embedding network parameters vary by types of neighbor atoms only, so there will be $N_\text{types}$ sets of embedding network parameters. Otherwise, the embedding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be $N_\text{types}^2$ sets of embedding network parameters. +- If the option {ref}`resnet_dt ` is set to `true`, then a timestep is used in the ResNet. +- {ref}`seed ` gives the random seed that is used to generate random numbers when initializing the model parameters. To make the `aparam.npy` used for descriptor `se_a_mask`, two variables in `fitting_net` section are needed. @@ -63,9 +63,9 @@ To make the `aparam.npy` used for descriptor `se_a_mask`, two variables in `fitt } ``` -- `neuron`, `resnet_dt` and `seed` are the same as the {ref}`fitting_net ` section for fitting energy. -- {ref}`numb_aparam ` gives the dimesion of the `aparam.npy` file. In this example, it is set to 1 and stores the real/virtual sign of the atoms. For real/virtual atoms, the corresponding sign in `aparam.npy` is set to 1/0. -- {ref}`use_aparam_as_mask ` is set to `true` to use the `aparam.npy` as the mask of the atoms in the descriptor `se_a_mask`. +- `neuron`, `resnet_dt` and `seed` are the same as the {ref}`fitting_net ` section for fitting energy. +- {ref}`numb_aparam ` gives the dimesion of the `aparam.npy` file. In this example, it is set to 1 and stores the real/virtual sign of the atoms. For real/virtual atoms, the corresponding sign in `aparam.npy` is set to 1/0. +- {ref}`use_aparam_as_mask ` is set to `true` to use the `aparam.npy` as the mask of the atoms in the descriptor `se_a_mask`. Finally, to make a reasonable fitting task with `se_a_mask` descriptor for DP/MM simulations, the loss function with `se_a_mask` is designed to include the atomic forces difference in specific atoms of the input particles only. More details about the selection of the specific atoms can be found in paper [DP/MM](left to be filled). diff --git a/doc/model/train-se-atten.md b/doc/model/train-se-atten.md index 24950d9595..bebce78365 100644 --- a/doc/model/train-se-atten.md +++ b/doc/model/train-se-atten.md @@ -104,17 +104,17 @@ An example of the DPA-1 descriptor is provided as follows } ``` -- The {ref}`type ` of the descriptor is set to `"se_atten"`, which will use DPA-1 structures. -- {ref}`rcut ` is the cut-off radius for neighbor searching, and the {ref}`rcut_smth ` gives where the smoothing starts. -- **{ref}`sel `** gives the maximum possible number of neighbors in the cut-off radius. It is an int. Note that this number highly affects the efficiency of training, which we usually use less than 200. (We use 120 for training 56 elements in [OC2M dataset](https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md)) -- The {ref}`neuron ` specifies the size of the embedding net. From left to right the members denote the sizes of each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size of the inner layer, then the inner layer is copied and concatenated, then a [ResNet architecture](https://arxiv.org/abs/1512.03385) is built between them. -- The {ref}`axis_neuron ` specifies the size of the submatrix of the embedding matrix, the axis matrix as explained in the [DeepPot-SE paper](https://arxiv.org/abs/1805.09003) -- If the option {ref}`resnet_dt ` is set to `true`, then a timestep is used in the ResNet. -- {ref}`seed ` gives the random seed that is used to generate random numbers when initializing the model parameters. -- {ref}`attn ` sets the length of a hidden vector during scale-dot attention computation. -- {ref}`attn_layer ` sets the number of layers in attention mechanism. -- {ref}`attn_mask ` determines whether to mask the diagonal in the attention weights and False is recommended. -- {ref}`attn_dotr ` determines whether to dot the relative coordinates on the attention weights as a gated scheme, True is recommended. +- The {ref}`type ` of the descriptor is set to `"se_atten"`, which will use DPA-1 structures. +- {ref}`rcut ` is the cut-off radius for neighbor searching, and the {ref}`rcut_smth ` gives where the smoothing starts. +- **{ref}`sel `** gives the maximum possible number of neighbors in the cut-off radius. It is an int. Note that this number highly affects the efficiency of training, which we usually use less than 200. (We use 120 for training 56 elements in [OC2M dataset](https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md)) +- The {ref}`neuron ` specifies the size of the embedding net. From left to right the members denote the sizes of each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size of the inner layer, then the inner layer is copied and concatenated, then a [ResNet architecture](https://arxiv.org/abs/1512.03385) is built between them. +- The {ref}`axis_neuron ` specifies the size of the submatrix of the embedding matrix, the axis matrix as explained in the [DeepPot-SE paper](https://arxiv.org/abs/1805.09003) +- If the option {ref}`resnet_dt ` is set to `true`, then a timestep is used in the ResNet. +- {ref}`seed ` gives the random seed that is used to generate random numbers when initializing the model parameters. +- {ref}`attn ` sets the length of a hidden vector during scale-dot attention computation. +- {ref}`attn_layer ` sets the number of layers in attention mechanism. +- {ref}`attn_mask ` determines whether to mask the diagonal in the attention weights and False is recommended. +- {ref}`attn_dotr ` determines whether to dot the relative coordinates on the attention weights as a gated scheme, True is recommended. ### Descriptor `"se_atten_v2"` @@ -138,7 +138,7 @@ You can use descriptor `"se_atten_v2"` and do not need to set `tebd_input_mode` Practical evidence demonstrates that `"se_atten_v2"` offers better and more stable performance compared to `"se_atten"`. -Notice: Model compression for the `se_atten_v2` descriptor is exclusively designed for models with the training parameter {ref}`attn_layer ` set to 0. +Notice: Model compression for the `se_atten_v2` descriptor is exclusively designed for models with the training parameter {ref}`attn_layer ` set to 0. ### Fitting `"ener"` diff --git a/doc/model/train-se-e2-a.md b/doc/model/train-se-e2-a.md index 2412bbc64e..81b95399e0 100644 --- a/doc/model/train-se-e2-a.md +++ b/doc/model/train-se-e2-a.md @@ -70,7 +70,7 @@ $deepmd_source_dir/examples/water/se_e2_a/input.json With the training input script, data are also provided in the example directory. One may train the model with the DeePMD-kit from the directory. -The construction of the descriptor is given by section {ref}`descriptor `. An example of the descriptor is provided as follows +The construction of the descriptor is given by section {ref}`descriptor `. An example of the descriptor is provided as follows ```json "descriptor" :{ @@ -86,11 +86,11 @@ The construction of the descriptor is given by section {ref}`descriptor ` of the descriptor is set to `"se_e2_a"`. -- {ref}`rcut ` is the cut-off radius for neighbor searching, and the {ref}`rcut_smth ` gives where the smoothing starts. -- {ref}`sel ` gives the maximum possible number of neighbors in the cut-off radius. It is a list, the length of which is the same as the number of atom types in the system, and `sel[i]` denotes the maximum possible number of neighbors with type `i`. -- The {ref}`neuron ` specifies the size of the embedding net. From left to right the members denote the sizes of each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size of the inner layer, then the inner layer is copied and concatenated, then a [ResNet architecture](https://arxiv.org/abs/1512.03385) is built between them. -- If the option {ref}`type_one_side ` is set to `true`, the embedding network parameters vary by types of neighbor atoms only, so there will be $N_\text{types}$ sets of embedding network parameters. Otherwise, the embedding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be $N_\text{types}^2$ sets of embedding network parameters. -- The {ref}`axis_neuron ` specifies the size of the submatrix of the embedding matrix, the axis matrix as explained in the [DeepPot-SE paper](https://arxiv.org/abs/1805.09003) -- If the option {ref}`resnet_dt ` is set to `true`, then a timestep is used in the ResNet. -- {ref}`seed ` gives the random seed that is used to generate random numbers when initializing the model parameters. +- The {ref}`type ` of the descriptor is set to `"se_e2_a"`. +- {ref}`rcut ` is the cut-off radius for neighbor searching, and the {ref}`rcut_smth ` gives where the smoothing starts. +- {ref}`sel ` gives the maximum possible number of neighbors in the cut-off radius. It is a list, the length of which is the same as the number of atom types in the system, and `sel[i]` denotes the maximum possible number of neighbors with type `i`. +- The {ref}`neuron ` specifies the size of the embedding net. From left to right the members denote the sizes of each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size of the inner layer, then the inner layer is copied and concatenated, then a [ResNet architecture](https://arxiv.org/abs/1512.03385) is built between them. +- If the option {ref}`type_one_side ` is set to `true`, the embedding network parameters vary by types of neighbor atoms only, so there will be $N_\text{types}$ sets of embedding network parameters. Otherwise, the embedding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be $N_\text{types}^2$ sets of embedding network parameters. +- The {ref}`axis_neuron ` specifies the size of the submatrix of the embedding matrix, the axis matrix as explained in the [DeepPot-SE paper](https://arxiv.org/abs/1805.09003) +- If the option {ref}`resnet_dt ` is set to `true`, then a timestep is used in the ResNet. +- {ref}`seed ` gives the random seed that is used to generate random numbers when initializing the model parameters. diff --git a/doc/model/train-se-e2-r.md b/doc/model/train-se-e2-r.md index f427310196..316bde43b4 100644 --- a/doc/model/train-se-e2-r.md +++ b/doc/model/train-se-e2-r.md @@ -52,7 +52,7 @@ A complete training input script of this example can be found in the directory $deepmd_source_dir/examples/water/se_e2_r/input.json ``` -The training input script is very similar to that of [`se_e2_a`](train-se-e2-a.md). The only difference lies in the {ref}`descriptor ` section +The training input script is very similar to that of [`se_e2_a`](train-se-e2-a.md). The only difference lies in the {ref}`descriptor ` section ```json "descriptor": { @@ -68,4 +68,4 @@ The training input script is very similar to that of [`se_e2_a`](train-se-e2-a.m }, ``` -The type of the descriptor is set by the key {ref}`type `. +The type of the descriptor is set by the key {ref}`type `. diff --git a/doc/model/train-se-e3-tebd.md b/doc/model/train-se-e3-tebd.md index 8b49b0c220..5935a8920a 100644 --- a/doc/model/train-se-e3-tebd.md +++ b/doc/model/train-se-e3-tebd.md @@ -56,7 +56,7 @@ A complete training input script of this example can be found in the directory $deepmd_source_dir/examples/water/se_e3_tebd/input.json ``` -The training input script is very similar to that of [`se_e2_a`](train-se-e2-a.md). The only difference lies in the {ref}`descriptor ` section +The training input script is very similar to that of [`se_e2_a`](train-se-e2-a.md). The only difference lies in the {ref}`descriptor ` section ```json "descriptor": { @@ -75,4 +75,4 @@ The training input script is very similar to that of [`se_e2_a`](train-se-e2-a.m }, ``` -The type of the descriptor is set by the key {ref}`type `. +The type of the descriptor is set by the key {ref}`type `. diff --git a/doc/model/train-se-e3.md b/doc/model/train-se-e3.md index d650d72493..3d82c42c9e 100644 --- a/doc/model/train-se-e3.md +++ b/doc/model/train-se-e3.md @@ -48,7 +48,7 @@ A complete training input script of this example can be found in the directory $deepmd_source_dir/examples/water/se_e3/input.json ``` -The training input script is very similar to that of [`se_e2_a`](train-se-e2-a.md). The only difference lies in the `descriptor ` section +The training input script is very similar to that of [`se_e2_a`](train-se-e2-a.md). The only difference lies in the `descriptor ` section ```json "descriptor": { @@ -63,4 +63,4 @@ The training input script is very similar to that of [`se_e2_a`](train-se-e2-a.m }, ``` -The type of the descriptor is set by the key {ref}`type `. +The type of the descriptor is set by the key {ref}`type `. diff --git a/doc/train/finetuning.md b/doc/train/finetuning.md index 4fbe95b2fd..669d1319bd 100644 --- a/doc/train/finetuning.md +++ b/doc/train/finetuning.md @@ -36,7 +36,7 @@ The elements in the training dataset must be contained in the pre-trained datase The finetune procedure will inherit the model structures in `pretrained.pb`, and thus it will ignore the model parameters in `input.json`, -such as {ref}`descriptor `, {ref}`fitting_net `, +such as {ref}`descriptor `, {ref}`fitting_net `, {ref}`type_embedding ` and {ref}`type_map `. However, you can still set the `trainable` parameters in each part of `input.json` to control the training procedure. diff --git a/doc/train/gpu-limitations.md b/doc/train/gpu-limitations.md index 92577fd65c..44c9697dd4 100644 --- a/doc/train/gpu-limitations.md +++ b/doc/train/gpu-limitations.md @@ -5,5 +5,5 @@ If you use DeePMD-kit in a GPU environment, the acceptable value range of some v 1. The number of atom types of a given system must be less than 128. 2. The maximum distance between an atom and its neighbors must be less than 128. It can be controlled by setting the rcut value of training parameters. 3. Theoretically, the maximum number of atoms that a single GPU can accept is about 10,000,000. However, this value is limited by the GPU memory size currently, usually within 1000,000 atoms even in the model compression mode. -4. The total sel value of training parameters(in `model/descriptor` section) must be less than 4096. +4. The total sel value of training parameters(in `model[standard]/descriptor` section) must be less than 4096. 5. The size of the last layer of the embedding net must be less than 1024 during the model compression process. diff --git a/doc/train/training-advanced.md b/doc/train/training-advanced.md index 9be12e9fb8..d21feb2126 100644 --- a/doc/train/training-advanced.md +++ b/doc/train/training-advanced.md @@ -114,7 +114,7 @@ The section {ref}`mixed_precision ` specifies the mixe - {ref}`output_prec ` precision used in the output tensors, only `float32` is supported currently. - {ref}`compute_prec ` precision used in the computing tensors, only `float16` is supported currently. Note there are several limitations about mixed precision training: -- Only {ref}`se_e2_a ` type descriptor is supported by the mixed precision training workflow. +- Only {ref}`se_e2_a ` type descriptor is supported by the mixed precision training workflow. - The precision of the embedding net and the fitting net are forced to be set to `float32`. Other keys in the {ref}`training ` section are explained below: From 18026eb427a197ce4cc4c0e2b24a382e31b093f7 Mon Sep 17 00:00:00 2001 From: Lysithea <52808607+CaRoLZhangxy@users.noreply.github.com> Date: Wed, 23 Oct 2024 17:23:51 +0800 Subject: [PATCH 07/13] fix(cc): fix message passing when nghost is 0 and send list is empty (#4237) fix errors mentioned in following pr: https://github.com/deepmodeling/deepmd-kit/pull/4220 https://github.com/deepmodeling/deepmd-kit/pull/4209 https://github.com/deepmodeling/deepmd-kit/pull/4144 ## Summary by CodeRabbit - **New Features** - Enhanced message passing logic in the computation process for improved efficiency. - Added new test functions to evaluate DeepMD model performance under various conditions. - **Bug Fixes** - Improved error handling and assertions in test cases to ensure robustness. - **Refactor** - Streamlined tensor operations in the communication process to enhance clarity and reduce unnecessary computations. - Removed outdated test cases related to neighbor list handling in the DeepPot class. --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- source/api_cc/src/DeepPotPT.cc | 22 ++++--- source/lmp/tests/test_lammps_dpa_pt_nopbc.py | 8 --- source/op/pt/comm.cc | 63 ++++++++++++-------- 3 files changed, 47 insertions(+), 46 deletions(-) diff --git a/source/api_cc/src/DeepPotPT.cc b/source/api_cc/src/DeepPotPT.cc index 84629042f4..4c7aac19b8 100644 --- a/source/api_cc/src/DeepPotPT.cc +++ b/source/api_cc/src/DeepPotPT.cc @@ -168,7 +168,7 @@ void DeepPotPT::compute(ENERGYVTYPE& ener, nlist_data.copy_from_nlist(lmp_list); nlist_data.shuffle_exclude_empty(fwd_map); nlist_data.padding(); - if (do_message_passing == 1 && nghost > 0) { + if (do_message_passing == 1) { int nswap = lmp_list.nswap; torch::Tensor sendproc_tensor = torch::from_blob(lmp_list.sendproc, {nswap}, int32_option); @@ -180,10 +180,14 @@ void DeepPotPT::compute(ENERGYVTYPE& ener, torch::from_blob(lmp_list.recvnum, {nswap}, int32_option); torch::Tensor sendnum_tensor = torch::from_blob(lmp_list.sendnum, {nswap}, int32_option); - torch::Tensor communicator_tensor = torch::from_blob( - const_cast(lmp_list.world), {1}, torch::kInt64); - // torch::Tensor communicator_tensor = - // torch::tensor(lmp_list.world, int32_option); + torch::Tensor communicator_tensor; + if (lmp_list.world == 0) { + communicator_tensor = torch::empty({1}, torch::kInt64); + } else { + communicator_tensor = torch::from_blob( + const_cast(lmp_list.world), {1}, torch::kInt64); + } + torch::Tensor nswap_tensor = torch::tensor(nswap, int32_option); int total_send = std::accumulate(lmp_list.sendnum, lmp_list.sendnum + nswap, 0); @@ -196,12 +200,6 @@ void DeepPotPT::compute(ENERGYVTYPE& ener, comm_dict.insert("recv_num", recvnum_tensor); comm_dict.insert("communicator", communicator_tensor); } - if (do_message_passing == 1 && nghost == 0) { - // for the situation that no ghost atoms (e.g. serial nopbc) - // set the mapping arange(nloc) is enough - auto option = torch::TensorOptions().device(device).dtype(torch::kInt64); - mapping_tensor = at::arange(nloc_real, option).unsqueeze(0); - } } at::Tensor firstneigh = createNlistTensor(nlist_data.jlist); firstneigh_tensor = firstneigh.to(torch::kInt64).to(device); @@ -224,7 +222,7 @@ void DeepPotPT::compute(ENERGYVTYPE& ener, .to(device); } c10::Dict outputs = - (do_message_passing == 1 && nghost > 0) + (do_message_passing == 1) ? module .run_method("forward_lower", coord_wrapped_Tensor, atype_Tensor, firstneigh_tensor, mapping_tensor, fparam_tensor, diff --git a/source/lmp/tests/test_lammps_dpa_pt_nopbc.py b/source/lmp/tests/test_lammps_dpa_pt_nopbc.py index 15fe2c0bc2..b0909bfc03 100644 --- a/source/lmp/tests/test_lammps_dpa_pt_nopbc.py +++ b/source/lmp/tests/test_lammps_dpa_pt_nopbc.py @@ -681,14 +681,6 @@ def test_pair_deepmd_si(lammps_si): [(["--balance"],), ([],)], ) def test_pair_deepmd_mpi(balance_args: list): - if balance_args == []: - # python:5331 terminated with signal 11 at PC=7f3e940e3806 SP=7ffd5787edc0. Backtrace: - # /home/runner/work/deepmd-kit/deepmd-kit/dp_test/lib/libdeepmd_op_pt.so(+0x95806)[0x7f3e940e3806] - # /home/runner/work/deepmd-kit/deepmd-kit/dp_test/lib/libdeepmd_op_pt.so(+0x8f76e)[0x7f3e940dd76e] - # /home/runner/work/deepmd-kit/deepmd-kit/dp_test/lib/libdeepmd_op_pt.so(+0x9a38a)[0x7f3e940e838a] - # /home/runner/work/deepmd-kit/deepmd-kit/dp_test/lib/libdeepmd_op_pt.so(_Z9border_opRKN2at6TensorES2_S2_S2_S2_S2_S2_S2_S2_+0x8e)[0x7f3e940dda63] - # /home/runner/work/deepmd-kit/deepmd-kit/dp_test/lib/libdeepmd_op_pt.so(+0xaeac3)[0x7f3e940fcac3] - pytest.skip(reason="Known segfault, see comments for details") with tempfile.NamedTemporaryFile() as f: sp.check_call( [ diff --git a/source/op/pt/comm.cc b/source/op/pt/comm.cc index a25dfbd542..71a2b0e118 100644 --- a/source/op/pt/comm.cc +++ b/source/op/pt/comm.cc @@ -87,16 +87,18 @@ class Border : public torch::autograd::Function { int mpi_init = 0; MPI_Initialized(&mpi_init); int cuda_aware = 1; - int me; + int me = 0; MPI_Comm world; int world_size = 0; - unpack_communicator(communicator_tensor, world); - MPI_Comm_rank(world, &me); - MPI_Comm_size(world, &world_size); + if (mpi_init) { + unpack_communicator(communicator_tensor, world); + MPI_Comm_rank(world, &me); + MPI_Comm_size(world, &world_size); + } MPI_Datatype mpi_type = get_mpi_type(); MPI_Request request; #if defined(GOOGLE_CUDA) || defined(TENSORFLOW_USE_ROCM) - if (world_size != 1) { + if (world_size >= 1) { int version, subversion; MPI_Get_version(&version, &subversion); if (version >= 4) { @@ -120,11 +122,15 @@ class Border : public torch::autograd::Function { for (int iswap = 0; iswap < nswap; ++iswap) { int nrecv = recvnum[iswap]; int nsend = sendnum[iswap]; - torch::Tensor isendlist = - torch::from_blob(sendlist[iswap], {nsend}, int32_options) - .to(recv_g1_tensor.device()); - torch::Tensor send_g1_tensor = recv_g1_tensor.index_select(0, isendlist); - FPTYPE* send_g1 = send_g1_tensor.data_ptr(); + torch::Tensor isendlist; + torch::Tensor send_g1_tensor; + FPTYPE* send_g1; + if (nsend != 0) { + isendlist = torch::from_blob(sendlist[iswap], {nsend}, int32_options) + .to(recv_g1_tensor.device()); + send_g1_tensor = recv_g1_tensor.index_select(0, isendlist); + send_g1 = send_g1_tensor.data_ptr(); + } #ifdef USE_MPI if (sendproc[iswap] != me) { if (nrecv) { @@ -207,15 +213,17 @@ class Border : public torch::autograd::Function { MPI_Initialized(&mpi_init); int world_size = 0; int cuda_aware = 1; + int me = 0; MPI_Comm world; - unpack_communicator(communicator_tensor, world); - int me; - MPI_Comm_rank(world, &me); - MPI_Comm_size(world, &world_size); + if (mpi_init) { + unpack_communicator(communicator_tensor, world); + MPI_Comm_rank(world, &me); + MPI_Comm_size(world, &world_size); + } MPI_Datatype mpi_type = get_mpi_type(); MPI_Request request; #if defined(GOOGLE_CUDA) || defined(TENSORFLOW_USE_ROCM) - if (world_size != 1) { + if (world_size >= 1) { int version, subversion; MPI_Get_version(&version, &subversion); if (version >= 4) { @@ -248,17 +256,20 @@ class Border : public torch::autograd::Function { int nlocal = nlocal_tensor.item(); int nghost = nghost_tensor.item(); int ntotal = nlocal + nghost; - - torch::Tensor send_g1_tensor = d_local_g1_tensor; - - int max_recvnum = sendnum_tensor.max().item(); - auto options = torch::TensorOptions() - .dtype(d_local_g1_tensor.dtype()) - .device(d_local_g1_tensor.device()); - torch::Tensor recv_g1_tensor = - torch::empty({max_recvnum, tensor_size}, options); - FPTYPE* recv_g1 = recv_g1_tensor.data_ptr(); - FPTYPE* send_g1 = send_g1_tensor.data_ptr() + ntotal * tensor_size; + torch::Tensor send_g1_tensor; + torch::Tensor recv_g1_tensor; + FPTYPE* recv_g1; + FPTYPE* send_g1; + if (nswap != 0) { + send_g1_tensor = d_local_g1_tensor; + int max_recvnum = sendnum_tensor.max().item(); + auto options = torch::TensorOptions() + .dtype(d_local_g1_tensor.dtype()) + .device(d_local_g1_tensor.device()); + recv_g1_tensor = torch::empty({max_recvnum, tensor_size}, options); + recv_g1 = recv_g1_tensor.data_ptr(); + send_g1 = send_g1_tensor.data_ptr() + ntotal * tensor_size; + } int end = ntotal; auto int32_options = torch::TensorOptions().dtype(torch::kInt32); From a74d963d50e74164d18b66f2e0c4dcda49ff7cd0 Mon Sep 17 00:00:00 2001 From: Duo <50307526+iProzd@users.noreply.github.com> Date: Wed, 23 Oct 2024 18:13:11 +0800 Subject: [PATCH 08/13] feat(pt): support CPU parallel training with PT (#4224) Fix #4132. ## Summary by CodeRabbit - **New Features** - Enhanced backend selection for distributed training, allowing for flexible use of NCCL or Gloo based on availability. - **Bug Fixes** - Corrected indentation for improved code clarity. --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- deepmd/pt/entrypoints/main.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/deepmd/pt/entrypoints/main.py b/deepmd/pt/entrypoints/main.py index 71f81b0a12..c56e7f0731 100644 --- a/deepmd/pt/entrypoints/main.py +++ b/deepmd/pt/entrypoints/main.py @@ -105,8 +105,7 @@ def get_trainer( local_rank = os.environ.get("LOCAL_RANK") if local_rank is not None: local_rank = int(local_rank) - assert dist.is_nccl_available() - dist.init_process_group(backend="nccl") + dist.init_process_group(backend="cuda:nccl,cpu:gloo") def prepare_trainer_input_single( model_params_single, data_dict_single, rank=0, seed=None From 8e777859c7f17e8812e4ed25237ca6b4f7cc04a3 Mon Sep 17 00:00:00 2001 From: Jinzhe Zeng Date: Wed, 23 Oct 2024 10:12:56 -0400 Subject: [PATCH 09/13] ci: limit downloaded files in build_docker (#4242) This download-artifact step fails randomly. Limiting the files to download should reduce the possibility of failure. ## Summary by CodeRabbit - **New Features** - Enhanced artifact downloading patterns for improved specificity in the build process. - Expanded artifact access during the PyPI index build. - **Improvements** - Maintained job structure and dependencies for consistent build and deployment processes. - Defined permissions for critical jobs to ensure secure operations. Signed-off-by: Jinzhe Zeng --- .github/workflows/build_wheel.yml | 2 ++ 1 file changed, 2 insertions(+) diff --git a/.github/workflows/build_wheel.yml b/.github/workflows/build_wheel.yml index c4d2ed3486..db5745e241 100644 --- a/.github/workflows/build_wheel.yml +++ b/.github/workflows/build_wheel.yml @@ -148,6 +148,7 @@ jobs: - uses: actions/download-artifact@v4 with: path: source/install/docker/dist + pattern: cibw-*-manylinux_x86_64-cu${{ matrix.cuda_version }}* merge-multiple: true - name: Log in to the Container registry uses: docker/login-action@v3 @@ -180,6 +181,7 @@ jobs: - uses: actions/download-artifact@v4 with: path: dist/packages + pattern: cibw-* merge-multiple: true - uses: actions/setup-python@v5 name: Install Python From b78832df216009e3c628cc7083bc56413e6068c0 Mon Sep 17 00:00:00 2001 From: Duo <50307526+iProzd@users.noreply.github.com> Date: Wed, 23 Oct 2024 22:31:16 +0800 Subject: [PATCH 10/13] fix(pt): make int `rcut` safe after jit op (#4222) Fix #3974. ## Summary by CodeRabbit - **New Features** - Improved type consistency for neighbor statistics calculations by ensuring the `rcut` and `rcut_smth` parameters are always floats. - Enhanced handling of input parameters in various descriptor classes for better robustness. - **Bug Fixes** - Enhanced performance and reliability of neighbor statistics operations through constructor updates. - **Documentation** - Updated method signatures for clarity and consistency. --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- .../atomic_model/pairtab_atomic_model.py | 4 ++-- deepmd/pt/model/descriptor/repformer_layer.py | 4 ++-- deepmd/pt/model/descriptor/repformers.py | 4 ++-- deepmd/pt/model/descriptor/se_a.py | 4 ++-- deepmd/pt/model/descriptor/se_atten.py | 4 ++-- deepmd/pt/model/descriptor/se_r.py | 4 ++-- deepmd/pt/model/descriptor/se_t.py | 4 ++-- deepmd/pt/model/descriptor/se_t_tebd.py | 4 ++-- deepmd/pt/utils/neighbor_stat.py | 2 +- source/tests/pt/model/test_jit.py | 22 +++++++++++++++++++ 10 files changed, 39 insertions(+), 17 deletions(-) diff --git a/deepmd/pt/model/atomic_model/pairtab_atomic_model.py b/deepmd/pt/model/atomic_model/pairtab_atomic_model.py index 2918bba947..9a7ea14cfb 100644 --- a/deepmd/pt/model/atomic_model/pairtab_atomic_model.py +++ b/deepmd/pt/model/atomic_model/pairtab_atomic_model.py @@ -74,8 +74,8 @@ def __init__( super().__init__(type_map, **kwargs) super().init_out_stat() self.tab_file = tab_file - self.rcut = rcut - self.tab = self._set_pairtab(tab_file, rcut) + self.rcut = float(rcut) + self.tab = self._set_pairtab(tab_file, self.rcut) self.type_map = type_map self.ntypes = len(type_map) diff --git a/deepmd/pt/model/descriptor/repformer_layer.py b/deepmd/pt/model/descriptor/repformer_layer.py index 92e2404469..5270c94112 100644 --- a/deepmd/pt/model/descriptor/repformer_layer.py +++ b/deepmd/pt/model/descriptor/repformer_layer.py @@ -605,8 +605,8 @@ def __init__( ): super().__init__() self.epsilon = 1e-4 # protection of 1./nnei - self.rcut = rcut - self.rcut_smth = rcut_smth + self.rcut = float(rcut) + self.rcut_smth = float(rcut_smth) self.ntypes = ntypes sel = [sel] if isinstance(sel, int) else sel self.nnei = sum(sel) diff --git a/deepmd/pt/model/descriptor/repformers.py b/deepmd/pt/model/descriptor/repformers.py index ad4ead4d74..f237088a16 100644 --- a/deepmd/pt/model/descriptor/repformers.py +++ b/deepmd/pt/model/descriptor/repformers.py @@ -193,8 +193,8 @@ def __init__( Random seed for parameter initialization. """ super().__init__() - self.rcut = rcut - self.rcut_smth = rcut_smth + self.rcut = float(rcut) + self.rcut_smth = float(rcut_smth) self.ntypes = ntypes self.nlayers = nlayers sel = [sel] if isinstance(sel, int) else sel diff --git a/deepmd/pt/model/descriptor/se_a.py b/deepmd/pt/model/descriptor/se_a.py index e939a2541b..ffd645f2b9 100644 --- a/deepmd/pt/model/descriptor/se_a.py +++ b/deepmd/pt/model/descriptor/se_a.py @@ -395,8 +395,8 @@ def __init__( - axis_neuron: Number of columns of the sub-matrix of the embedding matrix. """ super().__init__() - self.rcut = rcut - self.rcut_smth = rcut_smth + self.rcut = float(rcut) + self.rcut_smth = float(rcut_smth) self.neuron = neuron self.filter_neuron = self.neuron self.axis_neuron = axis_neuron diff --git a/deepmd/pt/model/descriptor/se_atten.py b/deepmd/pt/model/descriptor/se_atten.py index c028230e9b..c3174a2011 100644 --- a/deepmd/pt/model/descriptor/se_atten.py +++ b/deepmd/pt/model/descriptor/se_atten.py @@ -149,8 +149,8 @@ def __init__( """ super().__init__() del type - self.rcut = rcut - self.rcut_smth = rcut_smth + self.rcut = float(rcut) + self.rcut_smth = float(rcut_smth) self.neuron = neuron self.filter_neuron = self.neuron self.axis_neuron = axis_neuron diff --git a/deepmd/pt/model/descriptor/se_r.py b/deepmd/pt/model/descriptor/se_r.py index e82bb23dac..4492a6c6b5 100644 --- a/deepmd/pt/model/descriptor/se_r.py +++ b/deepmd/pt/model/descriptor/se_r.py @@ -74,8 +74,8 @@ def __init__( **kwargs, ): super().__init__() - self.rcut = rcut - self.rcut_smth = rcut_smth + self.rcut = float(rcut) + self.rcut_smth = float(rcut_smth) self.neuron = neuron self.filter_neuron = self.neuron self.set_davg_zero = set_davg_zero diff --git a/deepmd/pt/model/descriptor/se_t.py b/deepmd/pt/model/descriptor/se_t.py index 072457b48f..49dbdaf027 100644 --- a/deepmd/pt/model/descriptor/se_t.py +++ b/deepmd/pt/model/descriptor/se_t.py @@ -446,8 +446,8 @@ def __init__( Random seed for initializing the network parameters. """ super().__init__() - self.rcut = rcut - self.rcut_smth = rcut_smth + self.rcut = float(rcut) + self.rcut_smth = float(rcut_smth) self.neuron = neuron self.filter_neuron = self.neuron self.set_davg_zero = set_davg_zero diff --git a/deepmd/pt/model/descriptor/se_t_tebd.py b/deepmd/pt/model/descriptor/se_t_tebd.py index 437a464709..c140527f31 100644 --- a/deepmd/pt/model/descriptor/se_t_tebd.py +++ b/deepmd/pt/model/descriptor/se_t_tebd.py @@ -512,8 +512,8 @@ def __init__( seed: Optional[Union[int, list[int]]] = None, ): super().__init__() - self.rcut = rcut - self.rcut_smth = rcut_smth + self.rcut = float(rcut) + self.rcut_smth = float(rcut_smth) self.neuron = neuron self.filter_neuron = self.neuron self.tebd_dim = tebd_dim diff --git a/deepmd/pt/utils/neighbor_stat.py b/deepmd/pt/utils/neighbor_stat.py index d427dc758a..7d52bfaae1 100644 --- a/deepmd/pt/utils/neighbor_stat.py +++ b/deepmd/pt/utils/neighbor_stat.py @@ -44,7 +44,7 @@ def __init__( mixed_types: bool, ) -> None: super().__init__() - self.rcut = rcut + self.rcut = float(rcut) self.ntypes = ntypes self.mixed_types = mixed_types diff --git a/source/tests/pt/model/test_jit.py b/source/tests/pt/model/test_jit.py index 248ccf9173..1f1034c330 100644 --- a/source/tests/pt/model/test_jit.py +++ b/source/tests/pt/model/test_jit.py @@ -144,5 +144,27 @@ def tearDown(self): JITTest.tearDown(self) +class TestEnergyModelDPA2IntRcut(unittest.TestCase, JITTest): + def setUp(self): + input_json = str(Path(__file__).parent / "water/se_atten.json") + with open(input_json) as f: + self.config = json.load(f) + data_file = [str(Path(__file__).parent / "water/data/data_0")] + self.config["training"]["training_data"]["systems"] = data_file + self.config["training"]["validation_data"]["systems"] = data_file + self.config["model"] = deepcopy(model_dpa2) + self.config["model"]["descriptor"]["repinit"]["rcut"] = int( + self.config["model"]["descriptor"]["repinit"]["rcut"] + ) + self.config["model"]["descriptor"]["repinit"]["rcut_smth"] = int( + self.config["model"]["descriptor"]["repinit"]["rcut_smth"] + ) + self.config["training"]["numb_steps"] = 10 + self.config["training"]["save_freq"] = 10 + + def tearDown(self): + JITTest.tearDown(self) + + if __name__ == "__main__": unittest.main() From 0fa1b435355cbcfe10af8e766a38fe34c502738f Mon Sep 17 00:00:00 2001 From: Jinzhe Zeng Date: Wed, 23 Oct 2024 10:58:02 -0400 Subject: [PATCH 11/13] style: enable TorchFix in pre-commit (#4230) Enable [TorchFix](https://github.com/pytorch-labs/torchfix). Need to resolve the following issues before merging: - #4229 - #4143 ## Summary by CodeRabbit - **New Features** - Integrated `flake8` for enhanced code quality checks. - Added `ruff-format` hook for improved linting. - Implemented consistent license header insertion for various file types. - **Bug Fixes** - Updated `check-added-large-files` hook to enforce a maximum file size of 1024 KB. - **Documentation** - Updated linting configuration with new rules under `[tool.flake8]`. --------- Signed-off-by: Jinzhe Zeng --- .pre-commit-config.yaml | 8 ++++++++ pyproject.toml | 7 +++++++ 2 files changed, 15 insertions(+) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 30efa6b062..53fdd9b71c 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -38,6 +38,14 @@ repos: - id: ruff-format exclude: ^source/3rdparty types_or: [python, pyi, jupyter] + - repo: https://github.com/pycqa/flake8 + # flake8 cannot autofix + rev: "7.1.1" + hooks: + - id: flake8 + additional_dependencies: + - torchfix==0.6.0 + - flake8-pyproject==1.2.3 # numpydoc - repo: https://github.com/Carreau/velin rev: 0.0.12 diff --git a/pyproject.toml b/pyproject.toml index b13dceeb07..4dbff24f13 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -419,3 +419,10 @@ plugins = ["source.3rdparty.coverage_plugins.jit_plugin"] load-plugins = "deepmd_checker" disable = "all" enable = "E8001,E8002" + +[tool.flake8] +select = [ + "TOR0", + "TOR1", + "TOR2", +] From c2d05602de39f07ae799e7b58be7db93a6098584 Mon Sep 17 00:00:00 2001 From: Duo <50307526+iProzd@users.noreply.github.com> Date: Thu, 24 Oct 2024 02:57:26 +0800 Subject: [PATCH 12/13] Chore(pt): slim uts for dpa1 (#4244) ## Summary by CodeRabbit - **Tests** - Simplified test parameters and logic for the `TestDPA1` class, reducing complexity in test cases. - Streamlined conditions for skipping tests based on specific parameters, enhancing test efficiency. --------- Signed-off-by: Duo <50307526+iProzd@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Jinzhe Zeng --- .../tests/consistent/descriptor/test_dpa1.py | 24 +++++-------------- 1 file changed, 6 insertions(+), 18 deletions(-) diff --git a/source/tests/consistent/descriptor/test_dpa1.py b/source/tests/consistent/descriptor/test_dpa1.py index ed7884adb9..3d80e310d0 100644 --- a/source/tests/consistent/descriptor/test_dpa1.py +++ b/source/tests/consistent/descriptor/test_dpa1.py @@ -52,22 +52,22 @@ (4,), # tebd_dim ("concat", "strip"), # tebd_input_mode (True,), # resnet_dt - (True, False), # type_one_side + (True,), # type_one_side (20,), # attn (0, 2), # attn_layer - (True, False), # attn_dotr + (True,), # attn_dotr ([], [[0, 1]]), # excluded_types (0.0,), # env_protection (True, False), # set_davg_zero (1.0,), # scaling_factor - (True, False), # normalize + (True,), # normalize (None, 1.0), # temperature (1e-5,), # ln_eps - (True, False), # smooth_type_embedding + (True,), # smooth_type_embedding (True,), # concat_output_tebd ("float64",), # precision (True, False), # use_econf_tebd - (False, True), # use_tebd_bias + (False,), # use_tebd_bias ) class TestDPA1(CommonTest, DescriptorTest, unittest.TestCase): @property @@ -127,11 +127,9 @@ def data(self) -> dict: def is_meaningless_zero_attention_layer_tests( self, attn_layer: int, - attn_dotr: bool, - normalize: bool, temperature: Optional[float], ) -> bool: - return attn_layer == 0 and (attn_dotr or normalize or temperature is not None) + return attn_layer == 0 and (temperature is not None) @property def skip_pt(self) -> bool: @@ -158,8 +156,6 @@ def skip_pt(self) -> bool: ) = self.param return CommonTest.skip_pt or self.is_meaningless_zero_attention_layer_tests( attn_layer, - attn_dotr, - normalize, temperature, ) @@ -188,8 +184,6 @@ def skip_dp(self) -> bool: ) = self.param return CommonTest.skip_dp or self.is_meaningless_zero_attention_layer_tests( attn_layer, - attn_dotr, - normalize, temperature, ) @@ -218,8 +212,6 @@ def skip_jax(self) -> bool: ) = self.param return not INSTALLED_JAX or self.is_meaningless_zero_attention_layer_tests( attn_layer, - attn_dotr, - normalize, temperature, ) @@ -250,8 +242,6 @@ def skip_array_api_strict(self) -> bool: not INSTALLED_ARRAY_API_STRICT or self.is_meaningless_zero_attention_layer_tests( attn_layer, - attn_dotr, - normalize, temperature, ) ) @@ -290,8 +280,6 @@ def skip_tf(self) -> bool: ) or self.is_meaningless_zero_attention_layer_tests( attn_layer, - attn_dotr, - normalize, temperature, ) ) From 0f817e16bd8eedc5ddc79d707799269be9273bde Mon Sep 17 00:00:00 2001 From: Jinzhe Zeng Date: Wed, 23 Oct 2024 19:45:48 -0400 Subject: [PATCH 13/13] style: extend no-explicit-dtype check to xp and jnp (#4247) ## Summary by CodeRabbit - **New Features** - Expanded the `DPChecker` to recognize additional libraries ("xp" and "jnp") for enhanced validation of function calls. - **Bug Fixes** - Improved compatibility of the `offset` calculation in the `xp_take_along_axis` function to ensure it matches the data type of the `indices` array. --------- Signed-off-by: Jinzhe Zeng --- deepmd/dpmodel/array_api.py | 2 +- source/checker/deepmd_checker.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/deepmd/dpmodel/array_api.py b/deepmd/dpmodel/array_api.py index 360df78a7b..322bf0e151 100644 --- a/deepmd/dpmodel/array_api.py +++ b/deepmd/dpmodel/array_api.py @@ -61,7 +61,7 @@ def xp_take_along_axis(arr, indices, axis): else: indices = xp.reshape(indices, (0, 0)) - offset = (xp.arange(indices.shape[0]) * m)[:, xp.newaxis] + offset = (xp.arange(indices.shape[0], dtype=indices.dtype) * m)[:, xp.newaxis] indices = xp.reshape(offset + indices, (-1,)) out = xp.take(arr, indices) diff --git a/source/checker/deepmd_checker.py b/source/checker/deepmd_checker.py index d763835fdc..0e11ed71c7 100644 --- a/source/checker/deepmd_checker.py +++ b/source/checker/deepmd_checker.py @@ -37,7 +37,7 @@ def visit_call(self, node): if ( isinstance(node.func, Attribute) and isinstance(node.func.expr, Name) - and node.func.expr.name in {"np", "tf", "torch"} + and node.func.expr.name in {"np", "tf", "torch", "xp", "jnp"} and node.func.attrname in { # https://pytorch.org/docs/stable/torch.html#creation-ops