You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
在论文里有写到 SPARQA在 complexWebQuesion数据集上准确率为 31.57% 低于PullNet(45.9%),是因为PullNet使用了额外的文档数据集。但是我回去找PullNet论文的数据,它说:“ On the test set, our model has 45.9%
Hits@1 in the KB only setting ” 。这是怎么回事呢?
论文的这种PipeLine的方式,我觉得在工程应用上有前途,可控!但是文中各个模块是单独训练的,没有像PullNet那样把各个模块串起来做若监督训练,是不是有提升空间?
有空交流下,多谢。
The text was updated successfully, but these errors were encountered:
Hi uwittygit, 问题1, 经与PullNet作者核实: In the KB only setting, PullNet did not use text corpus. The subgraph of PullNet is initiated with annotated topic entities. SPARQA do not use annotated topic entities. So it is still not comparable. I add the explanation in README.md. 问题2, 联合训练是值得尝试的,比如联合考虑entity linking的置信度, candidate query graph的置信度等因素.
在论文里有写到 SPARQA在 complexWebQuesion数据集上准确率为 31.57% 低于PullNet(45.9%),是因为PullNet使用了额外的文档数据集。但是我回去找PullNet论文的数据,它说:“ On the test set, our model has 45.9%
Hits@1 in the KB only setting ” 。这是怎么回事呢?
论文的这种PipeLine的方式,我觉得在工程应用上有前途,可控!但是文中各个模块是单独训练的,没有像PullNet那样把各个模块串起来做若监督训练,是不是有提升空间?
有空交流下,多谢。
The text was updated successfully, but these errors were encountered: