forked from princeton-vl/CornerNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
executable file
·179 lines (140 loc) · 4.6 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import numpy as np
class Config:
def __init__(self):
self._configs = {}
self._configs["dataset"] = None
self._configs["sampling_function"] = "kp_detection"
# Training Config
self._configs["display"] = 5
self._configs["snapshot"] = 5000
self._configs["stepsize"] = 450000
self._configs["learning_rate"] = 0.00025
self._configs["decay_rate"] = 10
self._configs["max_iter"] = 500000
self._configs["val_iter"] = 100
self._configs["batch_size"] = 1
self._configs["snapshot_name"] = None
self._configs["prefetch_size"] = 100
self._configs["weight_decay"] = False
self._configs["weight_decay_rate"] = 1e-5
self._configs["weight_decay_type"] = "l2"
self._configs["pretrain"] = None
self._configs["opt_algo"] = "adam"
self._configs["chunk_sizes"] = None
# Directories
self._configs["data_dir"] = "./data"
self._configs["cache_dir"] = "./cache"
self._configs["config_dir"] = "./config"
self._configs["result_dir"] = "./results"
# Split
self._configs["train_split"] = "trainval"
self._configs["val_split"] = "minival"
self._configs["test_split"] = "testdev"
# Rng
self._configs["data_rng"] = np.random.RandomState(123)
self._configs["nnet_rng"] = np.random.RandomState(317)
@property
def chunk_sizes(self):
return self._configs["chunk_sizes"]
@property
def train_split(self):
return self._configs["train_split"]
@property
def val_split(self):
return self._configs["val_split"]
@property
def test_split(self):
return self._configs["test_split"]
@property
def full(self):
return self._configs
@property
def sampling_function(self):
return self._configs["sampling_function"]
@property
def data_rng(self):
return self._configs["data_rng"]
@property
def nnet_rng(self):
return self._configs["nnet_rng"]
@property
def opt_algo(self):
return self._configs["opt_algo"]
@property
def weight_decay_type(self):
return self._configs["weight_decay_type"]
@property
def prefetch_size(self):
return self._configs["prefetch_size"]
@property
def pretrain(self):
return self._configs["pretrain"]
@property
def weight_decay_rate(self):
return self._configs["weight_decay_rate"]
@property
def weight_decay(self):
return self._configs["weight_decay"]
@property
def result_dir(self):
result_dir = os.path.join(self._configs["result_dir"], self.snapshot_name)
if not os.path.exists(result_dir):
os.makedirs(result_dir)
return result_dir
@property
def dataset(self):
return self._configs["dataset"]
@property
def snapshot_name(self):
return self._configs["snapshot_name"]
@property
def snapshot_dir(self):
snapshot_dir = os.path.join(self.cache_dir, "nnet", self.snapshot_name)
if not os.path.exists(snapshot_dir):
os.makedirs(snapshot_dir)
return snapshot_dir
@property
def snapshot_file(self):
snapshot_file = os.path.join(self.snapshot_dir, self.snapshot_name + "_{}.pkl")
return snapshot_file
@property
def config_dir(self):
return self._configs["config_dir"]
@property
def batch_size(self):
return self._configs["batch_size"]
@property
def max_iter(self):
return self._configs["max_iter"]
@property
def learning_rate(self):
return self._configs["learning_rate"]
@property
def decay_rate(self):
return self._configs["decay_rate"]
@property
def stepsize(self):
return self._configs["stepsize"]
@property
def snapshot(self):
return self._configs["snapshot"]
@property
def display(self):
return self._configs["display"]
@property
def val_iter(self):
return self._configs["val_iter"]
@property
def data_dir(self):
return self._configs["data_dir"]
@property
def cache_dir(self):
if not os.path.exists(self._configs["cache_dir"]):
os.makedirs(self._configs["cache_dir"])
return self._configs["cache_dir"]
def update_config(self, new):
for key in new:
if key in self._configs:
self._configs[key] = new[key]
system_configs = Config()