-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathocoden.py
219 lines (219 loc) · 6.79 KB
/
ocoden.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import math
import numpy as np
from matplotlib import pyplot as plt
import networkx
class PageRank:
def __init__(self,graph=networkx.DiGraph(),d=0.85,epsilon=0.0001):
self.graph=graph.copy()
self.V=len(self.graph)
self.d=d
self.epsilon=epsilon
self.ranks=dict()
self.prhist=[]
self.rlow=0
self.nranks=dict()
self.change=1.0
self.initpr()
def euclideanNorm(self,dic1,dic2,index):
return math.sqrt(float(sum((dic1.get(d)-dic2.get(d))**2 for d in index)))
def initpr(self):
for node in self.graph:
self.ranks[node]=1/float(self.V)
i=0
outll=dict()
for n in self.graph: outll[n]=len(self.graph.out_edges(n))
for i in xrange(1000):
oldranks=self.ranks.copy()
for node in self.graph.nodes():
rank_sum=0
for n in self.graph.predecessors(node):
outlinks=outll[n]
rank_sum+=(1/float(outlinks))*self.ranks[n]
self.ranks[node]=((1-float(self.d))*(1/float(self.V)))+self.d*rank_sum
if self.euclideanNorm(self.ranks,oldranks,self.graph)<self.epsilon: break
ans=self.ranks.copy()
psm=sum(ans[d] for d in ans)
for d in ans: ans[d]/=psm
self.prhist.append(ans)
print "Number of Iterations : {}".format(i)
def addgraph(self,graph):
#print "First:{}".format(len(graph.edges()))
for i,j in self.graph.edges():
try:
graph.remove_edge(i,j)
except:
pass
#print "Second:{}".format(len(graph.edges()))
print "Present No. of Edges : {}".format(len(self.graph.edges()))
print "Added No. of Edges : {}".format(len(graph.edges()))
vchanged=set()
vunchanged=set()
for i,j in graph.edges():
vchanged.add(i)
vchanged.add(j)
for node in self.graph:
vunchanged.add(node)
vunchanged=vunchanged.difference(vchanged)
self.graph.add_edges_from(graph.edges())
vpagerank=set()
while(len(vchanged)!=0):
n=vchanged.pop()
if n in vpagerank: continue
vpagerank.add(n)
for i in self.graph.successors(n):
vunchanged.discard(i)
vchanged.add(i)
for node in vunchanged:
self.ranks[node]=self.ranks[node]*self.V/(len(self.graph))
self.V=len(self.graph)
vborder=set()
for node in vpagerank:
for node1 in self.graph.predecessors(node):
vborder.add(node1)
vborder=vborder.difference(vpagerank)
for node in vborder:
self.ranks[node]=self.ranks[node]*self.V/(len(vpagerank))
print "Number of Changed Nodes : {}".format(len(vpagerank))
print "Total Nodes : {}".format(len(self.graph))
self.change=len(vpagerank)/float(len(self.graph))
for node in vpagerank:
self.ranks[node]=1/float(len(vpagerank))
i=0
nvpg=len(vpagerank)
outll=dict()
for n in vpagerank: outll[n]=len(self.graph.out_edges(n))
for n in vborder: outll[n]=len(self.graph.out_edges(n))
for i in xrange(1000):
oldranks=self.ranks.copy()
for node in vpagerank:
rank_sum=0
for n in self.graph.predecessors(node):
outlinks=outll[n]
rank_sum+=(1/float(outlinks))*self.ranks[n]
self.ranks[node]=((1-float(self.d))*(1/float(nvpg)))+self.d*rank_sum
if self.euclideanNorm(self.ranks,oldranks,vpagerank)<self.epsilon: break
print "Number of Iterations : {}".format(i)
#psm=sum(self.ranks[d] for d in vpagerank) for node in vborder: psm=psm+self.ranks[node] for d
#in vpagerank: self.ranks[d]/=psm
for node in vborder:
self.ranks[node]=self.ranks[node]*(len(vpagerank))/self.V
for node in vpagerank:
self.ranks[node]=self.ranks[node]*(len(vpagerank))/self.V
ans=self.ranks.copy()
su=sum(ans[n] for n in ans)
for n in ans: ans[n]/=su
self.prhist.append(ans)
def retranks(self,i=-1):
if i==-1: i=len(self.prhist)-1
ranks=self.prhist[i].copy()
rvals=[ranks[n] for n in ranks]
rvals=sorted(rvals,reverse=True)
x=[]
for l in rvals:
n=[k for k in ranks if ranks[k]==l]
x.append(n[0])
return x
def normalized_pagerank(self):
danglingnodes=[n for n in self.graph if self.graph.out_degree(n)==0.0]
self.rlow=0
print danglingnodes
l=len(self.prhist)-1
for n in danglingnodes:
self.rlow+=self.prhist[l][n]
self.rlow*=self.d
self.rlow+=1-self.d
self.rlow/=self.V
for n in self.prhist[l]: self.nranks[n]=self.prhist[l][n]/self.rlow
def printgraph(self,node):
x=xrange(0,len(self.prhist))
y=[]
for i in x:
if node in self.prhist[i]: y.append(self.prhist[i][node])
else : y.append(0)
plt.plot(x,y)
plt.show()
def printnormgraph(self,node):
x=xrange(0,len(self.prhist))
y=[]
for i in x:
if node in self.prhist[i]: y.append(len(self.prhist[i])*self.prhist[i][node])
else : y.append(0)
plt.plot(x,y)
plt.show()
def exppagerank(self,node,a):
i=len(self.prhist)-1
exp=1.0
num=0.0
den=0.0
while i>=0:
if node in self.prhist[i]: num+=exp*self.prhist[i][node]
else: num+=0
den+=exp
exp/=math.exp(a)
i-=1
ans=num/den
return ans
def logpagerank(self,node,a):
i=len(self.prhist)-1
num=0.0
den=0.0
while i>=0:
log=math.log(1+i*a)
if node in self.prhist[i]: num+=log*self.prhist[i][node]
else: num+=0
den+=log
i-=1
ans=num/den
return ans
def predict_pagerank1(self,node,x,i=-1):
a=[]
if i==-1: i=len(self.prhist)-1
count=0
while count<x and i>=0:
if node in self.prhist[i]:a.append(1000*self.prhist[i][node])
else: a.append(0)
i-=1
count+=1
b=[]
for j in xrange(1,count+1):
b.append(j)
c=np.polyfit(b,a,2)
p=np.poly1d(c)
return p(0)/1000.0
def predict_pagerank2(self,node,x,i=-1):
a=[]
if(i==-1): i=len(self.prhist)-1
k=i
count=0
while count<x and i>=1:
if node in self.prhist[i-1]:a.append(1000*(self.prhist[i][node]-self.prhist[i-1][node]))
else:
if node in self.prhist[i]: a.append(1000*self.prhist[i][node])
else: a.append(0)
i-=1
count+=1
b=[]
for j in xrange(1,count+1):
b.append(j)
c=np.polyfit(b,a,2)
p=np.poly1d(c)
if node not in self.prhist[k]: return p(0)/1000.0
return self.prhist[k][node]+p(0)/1000.0
def growthrank(self,i=-1):
if i==-1: i=len(self.prhist)-1
growth=dict()
for n in self.graph:
if n in self.prhist[i-1]:
growth[n]=self.prhist[i][n]-self.prhist[i-1][n]
continue
if n in self.prhist[i]:
growth[n]=self.prhist[i][n]
continue
growth[n]=0
rvals=[growth[n] for n in growth]
rvals=sorted(rvals,reverse=True)
x=[]
for l in rvals:
n=[k for k in growth if growth[k]==l]
x.append(n[0])
return x