-
Notifications
You must be signed in to change notification settings - Fork 0
/
example.typ
98 lines (86 loc) · 2.18 KB
/
example.typ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#import "pf2.typ": *
Hello world
#blk[
+ Hello world <l1>
+ Foobar
+ Next level
+ Previous level
+ Foobar
+ Next level <l2>
+ Sibling
+ Previous level by #refer(<l2>)
+ Previous level <l3>
+ Foobar @l1
+ Next level
+ Previous level
+ Previous level @l3
+ Previous level
+ Foobar
+ Next level @l3
+ Previous level
+ Parent 1 #parent(1)
+ Parent 2 #parent(2)
+ Parent 3 #parent(3)
]
#line()
#blk[
+ $2 = 8\/4$ <r0> \
#pf By Thm. 1.2
+ $8 = 2 sqrt(16)$
+ $8 = 4 + 4$ <r2> \
#pf Obvious.
+ $4 = sqrt(16)$
+ $4 . 4 = 16$ \
#pf Step @r2
+ #qed \
#pf By #prev(1)
+ #qed \
#pf #prev(1) and @r0
+ #qed \
#pf By #prev(1)
]
#line()
#blk[
+ #assume[There is a smallest purple number $n$.] <y1>
#prove[$n+1$ is puce.]
+ #suffices[There is a smallest purple number $n$.]
+ #suffices[
#assume[$n > 0$ by @y1]
#prove[$n + 1 > 1$]
]
+ #case[There is no smallest purple number.]
+ #pflet[Let $n$ be the smallest purple number.]
+ #pflet[$n = 2 sqrt(y)$ \ $m = n + 1$]
+ #def[$n = 2 sqrt(y)$ \ $m = n + 1$]
]
#line()
#blk[
+ #suffices[
#assume[There is a smallest purple number $n$.]
#prove[$n+1$ is puce.]
]
]
#line()
// Nested
#prove[$n in bb(N) => n = 3$]
+ Three proof blocks below
+ #blk[
+ #suffices[$n >= 0$, $n + 3 = 6$]
+ #assume[$n >= 0$, $n + 3 = 6$]
+ #prove[$n >= 0$, $n + 3 = 6$]
]
+ Just two now
+ #blk[
+ #suffices[$n in bb(N)$]
+ #suffices[$n in bb(N)$]
+ #suffices[$n in bb(N)$]
+ #suffices[$n in bb(N)$]
+ #suffices[$n in bb(N)$]
]
+ #blk[
+ #suffices[$n in bb(N)$]
+ #suffices[$n in bb(N)$]
+ #suffices[$n in bb(N)$]
+ #suffices[$n in bb(N)$]
+ #suffices[$n in bb(N)$]
]