-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
152 lines (111 loc) · 3.56 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import cv2
from copy import deepcopy
from PIL import Image
import pytesseract as tess
def preprocess(img):
cv2.imshow("Input",img)
imgBlurred = cv2.GaussianBlur(img, (5,5), 0)
gray = cv2.cvtColor(imgBlurred, cv2.COLOR_BGR2GRAY)
sobelx = cv2.Sobel(gray,cv2.CV_8U,1,0,ksize=3)
#cv2.imshow("Sobel",sobelx)
#cv2.waitKey(0)
ret2,threshold_img = cv2.threshold(sobelx,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
#cv2.imshow("Threshold",threshold_img)
#cv2.waitKey(0)
return threshold_img
def cleanPlate(plate):
print ("CLEANING PLATE. . .")
gray = cv2.cvtColor(plate, cv2.COLOR_BGR2GRAY)
#kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
#thresh= cv2.dilate(gray, kernel, iterations=1)
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
im1,contours,hierarchy = cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
if contours:
areas = [cv2.contourArea(c) for c in contours]
max_index = np.argmax(areas)
max_cnt = contours[max_index]
max_cntArea = areas[max_index]
x,y,w,h = cv2.boundingRect(max_cnt)
if not ratioCheck(max_cntArea,w,h):
return plate,None
cleaned_final = thresh[y:y+h, x:x+w]
#cv2.imshow("Function Test",cleaned_final)
return cleaned_final,[x,y,w,h]
else:
return plate,None
def extract_contours(threshold_img):
element = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=(17, 3))
morph_img_threshold = threshold_img.copy()
cv2.morphologyEx(src=threshold_img, op=cv2.MORPH_CLOSE, kernel=element, dst=morph_img_threshold)
cv2.imshow("Morphed",morph_img_threshold)
cv2.waitKey(0)
im2,contours, hierarchy= cv2.findContours(morph_img_threshold,mode=cv2.RETR_EXTERNAL,method=cv2.CHAIN_APPROX_NONE)
return contours
def ratioCheck(area, width, height):
ratio = float(width) / float(height)
if ratio < 1:
ratio = 1 / ratio
aspect = 4.7272
min = 15*aspect*15 # minimum area
max = 125*aspect*125 # maximum area
rmin = 3
rmax = 6
if (area < min or area > max) or (ratio < rmin or ratio > rmax):
return False
return True
def isMaxWhite(plate):
avg = np.mean(plate)
if(avg>=115):
return True
else:
return False
def validateRotationAndRatio(rect):
(x, y), (width, height), rect_angle = rect
if(width>height):
angle = -rect_angle
else:
angle = 90 + rect_angle
if angle>15:
return False
if height == 0 or width == 0:
return False
area = height*width
if not ratioCheck(area,width,height):
return False
else:
return True
def cleanAndRead(img,contours):
#count=0
for i,cnt in enumerate(contours):
min_rect = cv2.minAreaRect(cnt)
if validateRotationAndRatio(min_rect):
x,y,w,h = cv2.boundingRect(cnt)
plate_img = img[y:y+h,x:x+w]
if(isMaxWhite(plate_img)):
#count+=1
clean_plate, rect = cleanPlate(plate_img)
if rect:
x1,y1,w1,h1 = rect
x,y,w,h = x+x1,y+y1,w1,h1
cv2.imshow("Cleaned Plate",clean_plate)
cv2.waitKey(0)
plate_im = Image.fromarray(clean_plate)
text = tess.image_to_string(plate_im, lang='eng')
print ("Detected Text : ",text)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv2.imshow("Detected Plate",img)
cv2.waitKey(0)
#print "No. of final cont : " , count
if __name__ == '__main__':
print ("DETECTING PLATE . . .")
#img = cv2.imread("testData/Final.JPG")
img = cv2.imread("testData/test4.jpg")
threshold_img = preprocess(img)
contours= extract_contours(threshold_img)
#if len(contours)!=0:
#print len(contours) #Test
# cv2.drawContours(img, contours, -1, (0,255,0), 1)
# cv2.imshow("Contours",img)
# cv2.waitKey(0)
cleanAndRead(img,contours)