-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgroth16.go
264 lines (239 loc) · 8.75 KB
/
groth16.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
package playsnark
import (
"github.com/drand/kyber/util/random"
)
// Implements Groth16 paper https://eprint.iacr.org/2016/260.pdf
// In the paper, m represents the number of variables and n the number of
// constraints / equation. Note this implementation does not perform all
// optimization listed in the paper such as separating the verification from
// evaluation key and the pre-pairing result from the trusted setup.
// groth16ToxicWaste contains the results that must be delete after a trusted
// setup. It is kept here for testing and learning purpose.
type groth16ToxicWaste struct {
// Elements that are going to be committed on G1 for the "public" part of the
// trusted setup
Alpha Element
Beta Element
Delta Element
X Element
IoLP []Element
NioLP []Element
Gamma Element
}
// Groth16Setup contains all the information created during a trusted setup
// required by the prover and the verifier.
type Groth16Setup struct {
tw groth16ToxicWaste
// Alpha and beta are required to make sure the computation of the proof
// elements A B and C are consistent with each other w.r.t. the intermediate
// variables used, i.e. they used the same a_i inside their computation.
// three computations
Alpha G1
Beta G1
// Delta and gamma (in G2 later) forces independence of computations for A
// and B such that results can only be balanced by C and nothing else.
Delta G1
// {x^i} for i:0->nbGates-1
Xi []G1
// (beta*u_i(x) + alpha*v_i(x) + w_i(x)) / gamma for io related variable
// on G1
IoLP []G1
// (beta*u_i(x) + alpha*v_i(x) + w_i(x)) / delta for non-io / intermediate
// related variable on G1
NioLP []G1
// XiT are { x^i * t(x) / delta } for i:0 -> nbGates-2 where t(x) is the
// minimal polynomial of the QAP equation - used by the prover to evaluate
// h(x) * t(x) / delta blindly
XiT []G1
// Same element but in G2
Beta2 G2
Delta2 G2
Gamma G2
// {x^i} for i:0->nbGates-1
Xi2 []G1
}
// NewGroth16TrustedSetup returns a setup for the given circuit
func NewGroth16TrustedSetup(qap QAP) Groth16Setup {
var tw groth16ToxicWaste
var tr Groth16Setup
tw.Alpha = NewElement().Pick(random.New())
tr.Alpha = NewG1().Mul(tw.Alpha, nil)
tw.Beta = NewElement().Pick(random.New())
tr.Beta = NewG1().Mul(tw.Beta, nil)
tr.Beta2 = NewG2().Mul(tw.Beta, nil)
tw.Delta = NewElement().Pick(random.New())
tr.Delta = NewG1().Mul(tw.Delta, nil)
tr.Delta2 = NewG2().Mul(tw.Delta, nil)
tw.X = NewElement().Pick(random.New())
tr.Xi = GeneratePowersCommit(zeroG1, tw.X, one.Clone(), qap.nbGates-1)
tr.Xi2 = GeneratePowersCommit(zeroG2, tw.X, one.Clone(), qap.nbGates-1)
tw.Gamma = NewElement().Pick(random.New())
tr.Gamma = NewG2().Mul(tw.Gamma, nil)
// diff marks the separation between IO poly variables and intermediates
// ones
diff := qap.nbVars - qap.nbIO
// (beta*u_i(x) + alpha*v_i(x) + w_i(x)) / gamma for io related variable
// poly
tw.IoLP, tr.IoLP = fullLinearPoly(qap, 0, diff, tw.X, tw.Alpha, tw.Beta, tw.Gamma)
// same for intermediate variables, "non-io", and divided by delta
tw.NioLP, tr.NioLP = fullLinearPoly(qap, diff, qap.nbVars, tw.X, tw.Alpha, tw.Beta, tw.Delta)
// XiT are { x^i * t(x) / delta } for i:0 -> nbGates-2 where t(x) is the
tx := qap.z.Eval(tw.X)
txd := NewElement().Div(tx, tw.Delta)
power := qap.nbGates - 2
tr.XiT = GeneratePowersCommit(zeroG1, tw.X, txd, power)
tr.tw = tw
return tr
}
// Groth16Proof contains the three elements required by the verifier as well as
// the private values used by the prover (which must not be given to verifier as
// this would break zero knowledge)
type Groth16Proof struct {
tp groth16ToxicProof
A G1
B G2
C G1
}
// This struct contains the two private fields randomly sampled by the prover
// during computation of the proof, required to provide zero knowledge.
type groth16ToxicProof struct {
R Element
S Element
}
// Groth16Prove proofs it knows a solution sol for the given circuit and returns
// the proof
func Groth16Prove(tr Groth16Setup, q QAP, sol Vector) Groth16Proof {
// The proof code is structured in three pieces, for generating the three
// elements of the proofs A B and C.
//
// the following is just an helper function to compute sum of blindly
// evaluated polynomials
// basis^SUM(a_i * poly(x))
// For SUM(a_i * u_i(x)) since we dont know x, we need to use G1^x^i
// directly
// g^u_i(x) = SUM_j( g^(x^i)^coeff(u_i,j)) = g^(u0 *x^0 + u1*x^1 + ...)
// We then multiply by the solution vector to have g^(s_i * u_i(x))
// and iteratively sum the results for all variables
sumBlind := func(basis Commit, polys []Poly, xi []Commit) Commit {
var sum = basis.Clone().Null()
for i := 0; i < q.nbVars; i++ {
uix := polys[i].BlindEval(basis.Clone().Null(), xi)
sum = sum.Add(sum, uix.Mul(sol[i].ToFieldElement(), uix))
}
return sum
}
// ----------------------------------------------------
// Compute A = G1^(alpha + SUM(a_i * u_i(x)) + r*delta)
// we compute each part directly in the exponent thx to the trusted setup
//
var A = sumBlind(zeroG1, q.left, tr.Xi)
// Pick r and then compute g^(r * delta)
r := NewElement().Pick(random.New())
rd := NewG1().Mul(r, tr.Delta)
// A = G1^(alpha + SUM(a_i * u_i(x)) + r*delta)
A = A.Add(A, rd)
A = A.Add(tr.Alpha, A)
// ----------------------------------------------
// We do something similar for B expcet in it's G2
// B = G2^(beta + SUM(a_i * v_i(x)) + s*delta
var B = sumBlind(zeroG2, q.right, tr.Xi2)
s := NewElement().Pick(random.New())
sd := NewG2().Mul(s, tr.Delta2)
B = B.Add(B, sd)
B = B.Add(tr.Beta2, B)
// ------------------------------------------------------------------
// C is a bit more complex and we need to use different parts of the trusted
// setup to construct it
// C = G1^((1/delta * SUM(a_i * NioLP) + h(x)t(x)) + A*s + B*r - r*s*delta
// where NioLP = beta*u_i(x) + alpha * v_i(x) + w_i(x) where we only sum
// over the intermediates / non IO variables.
//
C := NewG1().Null()
// for the part with NioLP we use the NioLP part of the trusted setup and
// multiply every entry by the piecewise solution element
nio := NewG1().Null()
// we only take variables which are _not_ io
diff := q.nbVars - q.nbIO
for i := range tr.NioLP {
nio = nio.Add(nio, NewG1().Mul(sol[i+diff].ToFieldElement(), tr.NioLP[i]))
}
C = C.Add(C, nio)
// we can compute h(x)t(x)/delta from the XiT part of the trusted setup
// We can construct h(x) thanks to x^i and since we want to multiply by t(x)
// and divide by delta, then we directly use x^i * t(x) / delta which is XiT
// we first compute polynomial h so we get the coefficients
h := q.Quotient(sol)
htd := h.BlindEval(zeroG1, tr.XiT)
C = C.Add(C, htd)
// As is simple multiplication
As := NewG1().Mul(s, A)
C = C.Add(C, As)
// Br forces us to recompute B in G1 group though
B1 := sumBlind(zeroG1, q.right, tr.Xi)
sd1 := NewG1().Mul(s, tr.Delta)
B1 = B1.Add(B1, sd1)
B1 = B1.Add(B1, tr.Beta)
Br := NewG1().Mul(r, B1)
C = C.Add(C, Br)
// - r*s*delta
rsd := NewG1().Mul(NewElement().Mul(r, s), tr.Delta)
C = C.Add(C, rsd.Neg(rsd))
return Groth16Proof{
tp: groth16ToxicProof{
R: r,
S: s,
},
A: A,
B: B,
C: C,
}
}
// Groth16Verify returns true if the proof is valid
func Groth16Verify(tr Groth16Setup, q QAP, p Groth16Proof, io Vector) bool {
// Proof verification consists in 4 pairings (without optimizations) and one
// equation check:
// left side : e(A * B)
left := Pair(p.A, p.B)
// right side: a * b * c
// a. e(alpha, beta)
// b. e(SUM IoLP, gamma)
// c. e(C1, delta)
a := Pair(tr.Alpha, tr.Beta2)
b1 := NewG1().Null()
for i, iolp := range tr.IoLP {
b1 = b1.Add(b1, NewG1().Mul(io[i].ToFieldElement(), iolp))
}
b := Pair(b1, tr.Gamma)
c := Pair(p.C, tr.Delta2)
right := a.Add(a, b.Add(b, c))
return left.Equal(right)
}
// in g1, (beta*u_i(x) + alpha*v_i(x) + w_i(x)) for the i-th poly variable.
// I call this relation "linearPoly". fullLinearPoly iterates over multiples
// variables and returns the list and its commitment
func linearPolyForVar(qap QAP, i int, x, alpha, beta Element) Element {
// u_i(x)
ui := qap.left[i].Eval(x)
// beta * u_i(x)
bui := NewElement().Mul(ui, beta)
// v_i(x)
vi := qap.right[i].Eval(x)
// alpha * v_i(x)
avi := NewElement().Mul(vi, alpha)
wi := qap.out[i].Eval(x)
return wi.Add(wi, NewElement().Add(bui, avi))
}
// call linearPolyForVar for variable between min and max, and use the "div" as
// divider. Div should be gamma for the IO related variables and delta for the
// non IO related variables
func fullLinearPoly(qap QAP, min, max int, x, alpha, beta, div Element) ([]Element, []G1) {
var length = max - min
var lps = make([]Element, 0, length)
var commitLps = make([]G1, 0, length)
for i := min; i < max; i++ {
var lp = NewElement().Div(linearPolyForVar(qap, i, x, alpha, beta), div)
lps = append(lps, lp)
commitLps = append(commitLps, NewG1().Mul(lp, nil))
}
return lps, commitLps
}