-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgebra.go
384 lines (343 loc) · 8.63 KB
/
algebra.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
package playsnark
import (
"bytes"
"fmt"
"sort"
"github.com/drand/kyber"
)
type Value int
type Vector []Value
type Matrix []Vector
func NewMatrix(rows []Vector) Matrix {
return Matrix(rows)
}
func (m Matrix) String() string {
var b bytes.Buffer
b.WriteString("[\n")
for _, row := range m {
b.WriteString(" [")
for _, v := range row {
b.WriteString(fmt.Sprintf("%3v", v))
}
b.WriteString(" ]\n")
}
b.WriteString("]\n")
return b.String()
}
func (m Matrix) Column(i int) Vector {
v := make(Vector, 0, len(m))
for _, row := range m {
v = append(v, row[i])
}
return v
}
func (m Matrix) Transpose() Matrix {
nbRow := len(m[0])
m2 := make(Matrix, 0, nbRow)
for i := 0; i < nbRow; i++ {
m2 = append(m2, m.Column(i))
}
return m2
}
func (m Matrix) Mul(v Vector) Vector {
var out Vector
for _, row := range m {
var acc Value
for i := range row {
acc += row[i] * v[i]
}
out = append(out, acc)
}
return out
}
func (v Vector) Hadamard(v2 Vector) Vector {
out := make(Vector, 0, len(v))
for i := range v {
out = append(out, v[i]*v2[i])
}
return out
}
func (v Vector) Sub(v2 Vector) Vector {
out := make(Vector, len(v))
for i := range v {
out = append(out, v[i]-v2[i])
}
return out
}
func (v Vector) IsZero() bool {
for _, e := range v {
if e != 0 {
return false
}
}
return true
}
type Poly []Element
type PolyCommit []Commit
func (p Poly) Mul(p2 Poly) Poly {
l := len(p) + len(p2) - 1
output := make(Poly, l)
for i := 0; i < l; i++ {
output[i] = NewElement()
}
for i, v1 := range p {
for j, v2 := range p2 {
tmp := NewElement().Mul(v1, v2)
output[i+j] = output[i+j].Add(output[i+j], tmp)
}
}
return output
}
func (p Poly) Eval(i Element) Element {
xi := i.Clone()
v := zero.Clone()
for j := len(p) - 1; j >= 0; j-- {
v.Mul(v, xi)
v.Add(v, p[j])
}
return v
}
// Div returns the quotient p / p2 and the remainder using polynomial synthetic
// division
func (p Poly) Div(p2 Poly) (q Poly, r Poly) {
dividend := p
divisor := p2
out := make(Poly, len(dividend))
for i, c := range dividend {
out[i] = NewElement().Set(c)
}
for i := 0; i < len(dividend)-(len(divisor)-1); i++ {
out[i].Div(out[i], divisor[0])
if coef := out[i]; !coef.Equal(zero) {
var a = NewElement()
for j := 1; j < len(divisor); j++ {
out[i+j].Add(out[i+j], a.Mul(a.Neg(divisor[j]), coef))
}
}
}
separator := len(out) - (len(divisor) - 1)
return out[:separator], out[separator:]
}
// Long polynomial division
func (p *Poly) Div2(p2 Poly) (q Poly, r Poly) {
r = p.Clone()
for len(r) > 0 && len(r) >= len(p2) {
num := r[len(r)-1].Clone()
t := num.Div(num, p2[len(p2)-1])
degreeT := len(r) - len(p2)
tPoly := newPoly(degreeT)
tPoly[len(tPoly)-1] = t
q = q.Add(tPoly)
// tPoly is n-th coefficient of p / highest of p2 (degree m)
// (a / b) * x^(n-m)
// so tPoly * p2 has degree n
// tPoly * p2 = a * x^n + ... x^n-1 + ...
// so we can remove the last coefficient of "r" since r always contains
// the highest coefficient of p not "removed" so far
r = r.Sub(tPoly.Mul(p2))[:len(r)-1]
}
r.Normalize()
return
}
func (p Poly) Add(p2 Poly) Poly {
max := len(p)
if max < len(p2) {
max = len(p2)
}
output := make(Poly, max)
for i := range p {
output[i] = NewElement().Set(p[i])
}
for i := range p2 {
if output[i] == nil {
output[i] = NewElement()
}
output[i] = output[i].Add(output[i], p2[i])
}
return output
}
func (p Poly) Sub(p2 Poly) Poly {
max := len(p)
if max < len(p2) {
max = len(p2)
}
output := make(Poly, max)
for i := range p {
output[i] = NewElement().Set(p[i])
}
for i := range p2 {
if output[i] == nil {
output[i] = NewElement()
}
output[i] = output[i].Sub(output[i], p2[i])
}
return output
}
func (p Poly) Equal(p2 Poly) bool {
if len(p) != len(p) {
return false
}
for i := 0; i < len(p); i++ {
if !p[i].Equal(p2[i]) {
return false
}
}
return true
}
func (p Poly) Clone() Poly {
o := make(Poly, len(p))
for i := 0; i < len(p); i++ {
o[i] = p[i].Clone()
}
return o
}
func newPoly(d int) Poly {
o := make(Poly, d+1)
for i := 0; i <= d; i++ {
o[i] = NewElement()
}
return o
}
// Normalize remove all the 0 coefficients from the highest degree downwards
// until it encounters a non zero coefficients (i.e. len(p) will give the degree
// of the coefficient)
func (p Poly) Normalize() Poly {
maxi := len(p)
for i := len(p) - 1; i >= 0; i-- {
if !p[i].Equal(zero) {
return p[:maxi]
}
maxi--
}
return p[:maxi]
}
func (p Poly) Degree() int {
return len(p) - 1
}
type pair struct {
I int
V Element
}
// Interpolate takes a list of element [ y_1, ... y_n] and returns
// a polynomial p such that (note the indices)
// p(1) = y_1, p(2) = y_2, ... p(n) = y_n
// Code largely taken from github.com/drand/kyber
func Interpolate(ys []Element) Poly {
var pairs []pair
for i, y := range ys {
pairs = append(pairs, pair{I: i + 1, V: y})
}
x, y := xyScalar(Group, pairs)
var accPoly = Poly([]Element{zero})
//den := g.Scalar()
// Notations follow the Wikipedia article on Lagrange interpolation
// https://en.wikipedia.org/wiki/Lagrange_polynomial
for j := range x {
basis := lagrangeBasis(Group, j, x)
for i := range basis {
basis[i] = basis[i].Mul(basis[i], y[j])
}
if accPoly == nil {
accPoly = basis
continue
}
// add all L_j * y_j together
accPoly = accPoly.Add(basis)
}
return accPoly
}
type byIndexScalar []pair
func (s byIndexScalar) Len() int { return len(s) }
func (s byIndexScalar) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s byIndexScalar) Less(i, j int) bool { return s[i].I < s[j].I }
// xyScalar returns the list of (x_i, y_i) pairs indexed. The first map returned
// is the list of x_i and the second map is the list of y_i, both indexed in
// their respective map at index i.
func xyScalar(g kyber.Group, shares []pair) (map[int]Element, map[int]Element) {
// we are sorting first the shares since the shares may be unrelated for
// some applications. In this case, all participants needs to interpolate on
// the exact same order shares.
sorted := make([]pair, 0, len(shares))
for _, share := range shares {
sorted = append(sorted, share)
}
sort.Sort(byIndexScalar(sorted))
x := make(map[int]kyber.Scalar)
y := make(map[int]kyber.Scalar)
for _, s := range sorted {
if s.V == nil || s.I < 0 {
continue
}
idx := s.I
x[idx] = g.Scalar().SetInt64(int64(idx))
y[idx] = s.V
}
return x, y
}
// lagrangeBasis returns a PriPoly containing the Lagrange coefficients for the
// i-th position. xs is a mapping between the indices and the values that the
// interpolation is using, computed with xyScalar().
func lagrangeBasis(g kyber.Group, i int, xs map[int]Element) Poly {
var basis = Poly([]Element{one.Clone()})
// compute lagrange basis l_j
den := g.Scalar().One()
var acc = g.Scalar().One()
for m, xm := range xs {
if i == m {
continue
}
// multiply by x -i
basis = basis.Mul(Poly([]Element{NewElement().Neg(xm), one.Clone()}))
den.Sub(xs[i], xm) // den = xi - xm
den.Inv(den) // den = 1 / den
acc.Mul(acc, den) // acc = acc * den
}
// multiply all coefficients by the denominator
for i := range basis {
basis[i] = basis[i].Mul(basis[i], acc)
}
return basis
}
// blindEvaluation takes a polynomial p(x) and a list of blinded points {s}
// such that the i-th value in blindedPoint is equal to s^i, s being unknown
// from the trusted setup.
// the result is SUM( g^(s^i)^p[i] ) <=> (in addition form) SUM(p[i] * (s^i * g)
// which is equivalent to g^p(s)
// We blindly evaluate for all coefficients of p, blindedPoints can be of higher
// degree it doesn't affect the result, but it must have at least the same
// degree as p
func (p Poly) BlindEval(zero Commit, blindedPoint []Commit) Commit {
// XXX change that to equality
if len(p) != len(blindedPoint) {
panic(fmt.Sprintf("mismatch of length between poly %d and blinded eval points %d", len(p), len(blindedPoint)))
}
var acc = zero.Clone()
var tmp = zero.Clone()
for i := 0; i < len(p); i++ {
acc = acc.Add(acc, tmp.Mul(p[i], blindedPoint[i]))
}
return acc
}
func (p Poly) Commit(base Commit) PolyCommit {
var pp = make([]Commit, 0, len(p))
for _, c := range p {
bb := base.Clone()
pp = append(pp, bb.Mul(c, bb))
}
return pp
}
// GeneratePowersCommit returns { g^shift * s^i} for i=0...power included
func GeneratePowersCommit(base Commit, e Element, shift Element, power int) []Commit {
var gi = make([]Commit, 0, power+1)
gi = append(gi, base.Clone().Mul(shift, nil))
var si = one.Clone()
var tmp = NewElement()
for i := 0; i < power; i++ {
// s * (tmp) = s * ( s * ( .. ) )
si = si.Mul(si, e)
// s^i * shift
tmp = tmp.Mul(si, shift)
gi = append(gi, base.Clone().Mul(tmp, nil))
}
return gi
}