-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathJacobiP.m
37 lines (30 loc) · 1.15 KB
/
JacobiP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
function [P] = JacobiP(x,alpha,beta,N)
% function [P] = JacobiP(x,alpha,beta,N)
% Purpose: Evaluate Jacobi Polynomial of type (alpha,beta) > -1
% (alpha+beta <> -1) at points x for order N and returns P[1:length(xp))]
% Note : They are normalized to be orthonormal.
% Turn points into row if needed.
xp = x; dims = size(xp);
if (dims(2)==1), xp = xp'; end;
PL = zeros(N+1,length(xp));
% Initial values P_0(x) and P_1(x)
gamma0 = 2^(alpha+beta+1)/(alpha+beta+1)*gamma(alpha+1)*...
gamma(beta+1)/gamma(alpha+beta+1);
PL(1,:) = 1.0/sqrt(gamma0);
if (N==0), P=PL'; return; end;
gamma1 = (alpha+1)*(beta+1)/(alpha+beta+3)*gamma0;
PL(2,:) = ((alpha+beta+2)*xp/2 + (alpha-beta)/2)/sqrt(gamma1);
if (N==1), P=PL(N+1,:)'; return; end;
% Repeat value in recurrence.
aold = 2/(2+alpha+beta)*sqrt((alpha+1)*(beta+1)/(alpha+beta+3));
% Forward recurrence using the symmetry of the recurrence.
for i=1:N-1
h1 = 2*i+alpha+beta;
anew = 2/(h1+2)*sqrt( (i+1)*(i+1+alpha+beta)*(i+1+alpha)*...
(i+1+beta)/(h1+1)/(h1+3));
bnew = - (alpha^2-beta^2)/h1/(h1+2);
PL(i+2,:) = 1/anew*( -aold*PL(i,:) + (xp-bnew).*PL(i+1,:));
aold =anew;
end;
P = PL(N+1,:)';
return