-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.xml
89 lines (89 loc) · 4.81 KB
/
index.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
<rss xmlns:atom="http://www.w3.org/2005/Atom" version="2.0">
<channel>
<title>Hzb's Study Blog</title>
<link>http://example.org/</link>
<description>Hzb's Blog</description>
<generator>Hugo -- gohugo.io</generator><language>zh-CN</language><lastBuildDate>Tue, 03 Oct 2023 10:51:29 +0800</lastBuildDate>
<atom:link href="http://example.org/index.xml" rel="self" type="application/rss+xml" />
<item>
<title>【论文阅读】ReAct</title>
<link>http://example.org/posts/react/</link>
<pubDate>Tue, 03 Oct 2023 10:51:29 +0800</pubDate>
<author>huzhanbin</author>
<guid>http://example.org/posts/react/</guid>
<description><![CDATA[将推理(Reson)和行动(Acting)相结合,使得语言模型能够处理多种语言推理和决策任务。]]></description>
</item>
<item>
<title>【论文阅读】Emergent Abilities of Large Language Models</title>
<link>http://example.org/posts/emergent_abilities_of_llm/</link>
<pubDate>Thu, 14 Sep 2023 10:19:10 +0800</pubDate>
<author>huzhanbin</author>
<guid>http://example.org/posts/emergent_abilities_of_llm/</guid>
<description><![CDATA[量变引起质变:涌现的能力指在小模型时并不具有,表现接近随机,而在模型规模越过一个阈值时,表现突然提升]]></description>
</item>
<item>
<title>【论文阅读】LLM+P</title>
<link>http://example.org/posts/llm+p/</link>
<pubDate>Tue, 05 Sep 2023 10:51:29 +0800</pubDate>
<author>huzhanbin</author>
<guid>http://example.org/posts/llm+p/</guid>
<description><![CDATA[LLM+P将传统规划方法的优点整合到LLMs的框架中]]></description>
</item>
<item>
<title>搭建ChatGPT微信对话机器人教程</title>
<link>http://example.org/posts/chatgpt/</link>
<pubDate>Mon, 12 Dec 2022 10:52:12 +0800</pubDate>
<author>huzhanbin</author>
<guid>http://example.org/posts/chatgpt/</guid>
<description><![CDATA[0行代码、1.5元成本,基于全世界最先进的对话ai模型ChatGPT搭建属于你自己的微信对话机器人!]]></description>
</item>
<item>
<title>3D Human Pose Estimation</title>
<link>http://example.org/posts/hpe/</link>
<pubDate>Wed, 07 Dec 2022 10:52:12 +0800</pubDate>
<author>huzhanbin</author>
<guid>http://example.org/posts/hpe/</guid>
<description><![CDATA[description]]></description>
</item>
<item>
<title>Self-Supervised PreTrain</title>
<link>http://example.org/posts/self-supervised+pretrain/</link>
<pubDate>Sun, 20 Nov 2022 11:23:46 +0800</pubDate>
<author>huzhanbin</author>
<guid>http://example.org/posts/self-supervised+pretrain/</guid>
<description><![CDATA[Self-Supervised PreTrain Pretext task Pretext task也叫surrogate task,也称作代理任务。 Pretext可以理解为是一种为达到特定训练任务而设计的间接任务。比如,我]]></description>
</item>
<item>
<title>FCN & U-Net</title>
<link>http://example.org/posts/fcn+ampamp+u-net/</link>
<pubDate>Thu, 27 Oct 2022 19:16:59 +0800</pubDate>
<author>作者</author>
<guid>http://example.org/posts/fcn+ampamp+u-net/</guid>
<description><![CDATA[FCN 简介 FCN(Fully Convolutional Networks,全卷积网络)是Jonathan Long等人于2015年在Fully Convolutional Networks for Semantic Segmentatio]]></description>
</item>
<item>
<title>FPN & SSD & YOLO</title>
<link>http://example.org/posts/fpn+ampamp+ssd+ampamp+yolo/</link>
<pubDate>Wed, 26 Oct 2022 15:42:33 +0800</pubDate>
<author>作者</author>
<guid>http://example.org/posts/fpn+ampamp+ssd+ampamp+yolo/</guid>
<description><![CDATA[FPN 提出原因 卷积网络中,深层网络容易响应语义特征,浅层网络容易响应图像特征。然而,在目标检测中往往因为卷积网络的这个特征带来了不少麻烦:高层网]]></description>
</item>
<item>
<title>ShuffleNet & EfficientNet</title>
<link>http://example.org/posts/shufflenet+ampamp+efficientnet/</link>
<pubDate>Mon, 12 Sep 2022 15:05:52 +0800</pubDate>
<author>作者</author>
<guid>http://example.org/posts/shufflenet+ampamp+efficientnet/</guid>
<description><![CDATA[ShuffleNet 简介 ShuffleNet是旷视科技提出的一种计算高效的CNN模型,其和MobileNet和SqueezeNet等一样主要是想应用在移动端。]]></description>
</item>
<item>
<title>SENet & MobileNet</title>
<link>http://example.org/posts/senet+ampamp+mobilenet/</link>
<pubDate>Fri, 02 Sep 2022 22:27:28 +0800</pubDate>
<author>作者</author>
<guid>http://example.org/posts/senet+ampamp+mobilenet/</guid>
<description><![CDATA[SENet 简介 SENet是2017ILSVRC2017(ImageNet Large Scale Visual Recognition Challenge)竞赛的冠军网络,在CVPR2018引用量第一。在]]></description>
</item>
</channel>
</rss>