generated from nhsengland/analyticsunit-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathendoscopy_activity.R
86 lines (71 loc) · 4.05 KB
/
endoscopy_activity.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
library(dplyr)
library(lubridate)
library(readxl)
library(knitr)
library(kableExtra)
library(scales)
# Import data from file
diagnostics_data <- read_excel("C:/Users/GeorginaCable/OneDrive - NHS/Analysis/Diagnostics/Diagnostics Dashboard/Diagnostics Dashboard DATA.xlsx", sheet = "Raw",
col_types = c("date", "text", "skip",
"text", "skip", "skip", "skip", "skip",
"skip", "numeric", "skip", "skip",
"skip"))
# endoscopy_stocktake <- read_excel("C:/Users/martin.bloyce/OneDrive - NHS England/Restricted Library/SE/Analysis/Diagnostics/Endoscopy Stocktake/Endoscopy Stocktake Database with pivot table.xlsx",
# sheet = "Backing Data", skip = 2)
endoscopy_stocktake <- read_excel("C:/Users/GeorginaCable/OneDrive - NHS/Analysis/Diagnostics/Endoscopy Stocktake/240916 Endoscopy Stocktake Analysis.xlsx",
sheet = "Backing Data", skip = 2)
# Import provider names
# Lookups <- read_excel("C:/Users/martin.bloyce/OneDrive - NHS England/Reference/Lookups.xlsx",
# sheet = "ProviderMapping")
Lookups <- read_excel("C:/Users/GeorginaCable/OneDrive - NHS/Analysis/Diagnostics/Endoscopy Stocktake/Lookups.xlsx",
sheet = "ProviderMapping")
colnames(Lookups) <- c('orgname', 'orgshortname', 'orgcode', 'systemcode', 'systemname', 'systemshortname', 'orgtype', 'region')
Lookups <- Lookups[ , c('orgcode','orgshortname', 'systemshortname')]
# Clean up data
colnames(diagnostics_data) <- c('month', 'test', 'orgcode', 'activity') # Rename columns
diagnostics_data <- subset(diagnostics_data,
test %in% c('COLONOSCOPY', 'GASTROSCOPY')) # Subset endoscopy tests
#diagnostics_data$month <- as.Date(paste0("01-", diagnostics_data$month), format = "%d-%b-%y") # Set 'month' to date type
diagnostics_data <- diagnostics_data %>%
mutate(orgcode = ifelse(orgcode == "RXH", "RYR", orgcode)) # Merge Brighton and UH Sussex
# Bring in provider and ICB names
diagnostics_data <- left_join(diagnostics_data, Lookups, by='orgcode')
# Create 2019 baseline
baseline <- subset(diagnostics_data,
month < '2020-01-01')
baseline <- baseline %>%
group_by(orgshortname) %>%
summarise(activity_baseline = round(sum(activity)/12, 0))
colnames(baseline) <- c("Loc", "Baseline") # Rename columns to match and make rbind easier
# Do same for ICB
baseline_ICB <- subset(diagnostics_data,
month < '2020-01-01')
baseline_ICB <- baseline_ICB %>%
group_by(systemshortname) %>%
summarise(activity_baseline = round(sum(activity)/12, 0))
colnames(baseline_ICB) <- c("Loc", "Baseline") # Rename columns to match and make rbind easier
# Create last 3 months average
last_three_months <- subset(diagnostics_data,
month > max(month) %m-% months(3))
last_three_months <- last_three_months %>%
group_by(orgshortname) %>%
summarise(activity = round(sum(activity)/3, 0))
colnames(last_three_months) <- c("Loc", "Activity")
# Do same for ICB
last_three_months_ICB <- subset(diagnostics_data,
month > max(month) %m-% months(3))
last_three_months_ICB <- last_three_months_ICB %>%
group_by(systemshortname) %>%
summarise(activity = round(sum(activity)/3, 0))
colnames(last_three_months_ICB) <- c("Loc", "Activity") # Rename columns to match and make rbind easier
# Merge for calculations - doing in this step as preserves the table order
ICB <- merge(baseline_ICB, last_three_months_ICB)
prov <- merge(baseline, last_three_months)
# rbind ICB and provider tables
master <- rbind(ICB, prov)
# Merge and create % calculation
master$percent_of_baseline <- round((master$Activity / master$Baseline) *100)
# Replace 'na' as the total independant sector value
master$Loc[is.na(master$Loc)] <- "Independant Sector"
# Drop not needed objects
rm(list = setdiff(ls(), "master"))