-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpong_neat.py
114 lines (83 loc) · 2.37 KB
/
pong_neat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Trains Pong using NEAT
import neat
import numpy as np
import atari_py
import gym
import multiprocessing as mp
import sys
env = gym.make('Pong-ram-v4')
# run Pong
def fitness_pong(net: neat.Network, render: bool=False, steps=1000):
score = 0
for _ in range(1):
# env._max_episode_steps = steps
obs = env.reset()
net.clear()
# fitness
s = 0
while True:
close = False
if render:
close = not env.render()
# print(obs)
obs = obs / 256
# determine action
res = net.predict(obs)
action = np.argmax(res)
obs, reward, done, _ = env.step(action)
s += reward
if done or close:
break
score += s
if render:
print(s)
env.close()
if close:
break
return score
if __name__ == "__main__":
# init NEAT
neat_args = {
'n_pop': 100,
'max_species': 30,
'species_threshold': 1.0,
'survive_threshold': 0.5,
'clear_species': 100,
'prob_add_node': 0.01,
'prob_add_conn': 0.05,
'prob_replace_weight': 0.01,
'prob_mutate_weight': 0.5,
'prob_toggle_conn': 0.01,
'prob_replace_activation': 0.1,
'std_new': 1.0,
'std_mutate': 0.01,
'activations': ['sigmoid'],
'dist_weight': 0.5,
'dist_activation': 1.0,
'dist_disjoint': 1.0
}
n = neat.Neat(128, 6, neat_args)
# multiprocessing
pool = mp.Pool()
LENGTH = 1000
times = 0
best = -float('inf')
try:
for i in range(1000):
scores = []
pop = n.ask()
# eval population
for ind in pop:
scores.append(pool.apply_async(fitness_pong, ((ind, False, LENGTH))))
scores = [s.get() for s in scores]
n.tell(scores)
max_score = np.max(scores)
# if max_score > best:
if True:
if max_score > best:
best = max_score
ind = pop[np.argmax(scores)]
# print(ind)
fitness_pong(ind, render=True)
except Exception as e:
print("Error while training:", e)