-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpong_es.py
124 lines (90 loc) · 2.47 KB
/
pong_es.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Train Pong using ES
import es
import nn
import distrib
import numpy as np
import atari_py
import gym
import multiprocessing as mp
import sys
import time
env = gym.make('Pong-ram-v4')
# define network architecture
x = i = nn.Input((128,))
x = nn.Dense(6)(x)
net = nn.Model(i, x)
del x, i
# vectorized weights and original shape information
outw, outs = nn.get_vectorized_weights(net)
# run Pong
def fitness_pong(w, render: bool=False, steps=1000):
score = 0
nn.set_vectorized_weights(net, w, outs)
for _ in range(1):
# env._max_episode_steps = steps
obs = env.reset()
# fitness
s = 0
while True:
close = False
if render:
close = not env.render()
# print(obs)
obs = obs / 256
# determine action
res = net.predict(np.expand_dims(obs, 0))[0]
action = np.argmax(res)
obs, reward, done, _ = env.step(action)
s += reward
if done or close:
break
score += s
if render:
print(s)
env.close()
if close:
break
return score
if __name__ == "__main__":
# init ES
e = es.EvolutionStrategy(
outw,
1.0,
50, # much smaller than distributed
15,
min_sigma=1e-3,
big_sigma=5e-2,
wait_iter=100000
)
# multiprocessing
pool = mp.Pool()
LENGTH = 1000
times = 0
best = -float('inf')
try:
for i in range(1000):
scores = []
pop = e.ask()
# eval population
for ind in pop:
scores.append(pool.apply_async(fitness_pong, ((ind, False, LENGTH))))
thread_scores = scores
scores = []
ii = 0
for s in thread_scores:
scores.append(s.get())
ii += 1
print("{} / {}".format(ii, len(thread_scores)), end='\r')
e.tell(scores)
max_score = np.max(scores)
# if max_score > best:
if True:
if max_score > best:
best = max_score
ind = pop[np.argmax(scores)]
# print(ind)
fitness_pong(ind, render=True)
except Exception as e:
print("Error while training:", e)
finally:
pool.stop()