-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Re #122 - calculation for individual dspace resolution for each peak …
…and pixel
- Loading branch information
1 parent
e0fcbe3
commit 13da234
Showing
1 changed file
with
82 additions
and
0 deletions.
There are no files selected for viewing
82 changes: 82 additions & 0 deletions
82
Calibration/calculation_for_dspacing_resolution_by_pixel_peak.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from mantid.simpleapi import * | ||
|
||
chi2_threshold = 1e12 | ||
|
||
# Input dvalues (here are the diamond ones) | ||
dvalues = (0.3117,0.3257,0.3499,0.4205,0.4645,0.4768,0.4996,0.5150,0.5441,0.5642,0.5947, | ||
0.6307,.6866,.7283,.8185,.8920,1.0758,1.2615,2.0599) | ||
|
||
def get_fit_params_from_instrument_preselected_file(instrument): | ||
# Load files | ||
filename="%s_pdcalibration_diagnostics.nxs" % instrument | ||
|
||
cal_wksp = LoadNexusProcessed(Filename=filename) | ||
|
||
# Get the fitting parameters workspace | ||
if instrument == "NOM": | ||
wksp_name = "NOM_122825_diag_fitparam" | ||
if instrument == "PG3": | ||
wksp_name = "PG3_39169_diag_fitparam" | ||
return mtd[wksp_name] | ||
|
||
def get_fit_params_by_fitting(wksp): | ||
pass | ||
|
||
def get_column_data(wksp, val_col, chi2_col, threshold): | ||
values = list() | ||
for (val, chi2) in zip(wksp.column(val_col), wksp.column(chi2_col)): | ||
if chi2 < chi2_threshold: | ||
values.append(val) | ||
return values | ||
|
||
def deltaD(tof_center, tof_width, dspace_center): | ||
tof_fwhm = 2.* np.sqrt(2.*np.log(2.)) * tof_width | ||
dspace_fwhm = (tof_fwhm / tof_center) * dspace_center | ||
return dspace_fwhm | ||
|
||
if __name__=="__main__": | ||
wksp = get_fit_params_from_instrument_preselected_file("NOM") | ||
|
||
# Extract the column IDs of interest | ||
wksp_col = wksp.getColumnNames().index('wsindex') | ||
center_col = wksp.getColumnNames().index('centre') | ||
width_col = wksp.getColumnNames().index('width') | ||
peak_col = wksp.getColumnNames().index('peakindex') | ||
chi2_col = wksp.getColumnNames().index('chi2') | ||
|
||
# Extract data | ||
pixel_idx_vals = get_column_data(wksp, wksp_col, chi2_col, chi2_threshold) | ||
center_vals = get_column_data(wksp, center_col, chi2_col, chi2_threshold) | ||
width_vals = get_column_data(wksp, width_col, chi2_col, chi2_threshold) | ||
dspace_idx_vals = get_column_data(wksp, peak_col, chi2_col, chi2_threshold) | ||
|
||
# Make array where rows are pixels and cols are delta-d values (FWHM in dspace) | ||
pixels = np.unique(np.array(pixel_idx_vals)) | ||
idx2pixel = { i:pid for i, pid in enumerate(pixels) } | ||
pixel2idx = { pid:i for i, pid in enumerate(pixels)} | ||
|
||
''' | ||
TODO: vectorize the for-loop to operate on arrays for : tof_center, tof_widths, dvalues | ||
step 1 - get vector for dvalues, maybe use np.vstack, to create a len(pixels) * len(dvalues) vector for step 3 | ||
step 2 - vector operate on tof_widths to get tof_fwhms | ||
step 3 - vector operate on tof_fwhms / tof_centers * dvalues to get dspace_fwhms | ||
TODO: then, use histogramming (probably with a set number of bins) to reduce the number of points plotted. | ||
could do an array of len(n_histograms)*len(dvalues) that can be plotted quickly and easily and easier for linear regression | ||
would also be necessary before interactivity could be introduced for say: displaying number of pixels per dspacing, | ||
changing sigma for inclusion around linear regression line, etc. | ||
''' | ||
pixel_deltaD = np.zeros((len(pixels), len(dvalues))) | ||
fig, ax = plt.subplots(1) | ||
for pidx, tof_center, tof_width, dspace_idx in zip(pixel_idx_vals, center_vals, width_vals, dspace_idx_vals): | ||
dspace_width = deltaD(tof_center, tof_width, dvalues[dspace_idx]) | ||
pixel_deltaD[pixel2idx[pidx],dspace_idx] = dspace_width | ||
|
||
for idx, row in enumerate(pixel_deltaD): | ||
ax.plot(dvalues, row, 'o', label="Pixel: %d" % idx2pixel[idx]) | ||
|
||
ax.legend() | ||
plt.show() | ||
|
||
|