-
Notifications
You must be signed in to change notification settings - Fork 2
/
BayesianBrainy_Train_Vnet.py
97 lines (85 loc) · 3.09 KB
/
BayesianBrainy_Train_Vnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import nobrainer
import tensorflow as tf
from nobrainer.models.bayesian_vnet import bayesian_vnet
import tensorflow.keras.backend as K
root_path = '/nobackup/users/abizeul/kwyk/tfrecords/'
train_pattern = root_path+'data-train_shard-*.tfrec'
eval_pattern = root_path + 'data-evaluate_shard-*.tfrec'
n_classes = 1
batch_size = 8
volume_shape = (256, 256, 256)
block_shape = (32, 32, 32)
n_epochs = None
augment = True
shuffle_buffer_size = 2000
num_parallel_calls = 8
dataset_train = nobrainer.dataset.get_dataset(
file_pattern=train_pattern,
n_classes=n_classes,
batch_size=batch_size,
volume_shape=volume_shape,
block_shape=block_shape,
n_epochs=n_epochs,
augment=augment,
shuffle_buffer_size=shuffle_buffer_size,
num_parallel_calls=num_parallel_calls,
)
dataset_evaluate = nobrainer.dataset.get_dataset(
file_pattern=eval_pattern,
n_classes=n_classes,
batch_size=batch_size,
volume_shape=volume_shape,
block_shape=block_shape,
n_epochs=1,
augment=False,
shuffle_buffer_size=None,
num_parallel_calls=1,
)
print('Data Loaded and Initialized.......')
strategy = tf.distribute.MirroredStrategy()
print("Number of devices: {}".format(strategy.num_replicas_in_sync))
model_path = '/nobackup/users/aakrana/nobrainer_2/nobrainer/models/brainy/vnet_brainy_weights.{epoch:03d}-{val_loss:.4f}.h5'
with strategy.scope():
model = bayesian_vnet(input_shape = block_shape+(1,),kernel_size=3, activation="relu",padding="SAME")
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-03)
model.compile(optimizer=optimizer,loss=nobrainer.losses.jaccard,metrics=[nobrainer.metrics.dice, nobrainer.metrics.jaccard],)
print('Model Loaded and Initialized.......')
steps_per_epoch = nobrainer.dataset.get_steps_per_epoch(
n_volumes=10000,
volume_shape=(128,128,128),
block_shape=block_shape,
batch_size=batch_size)
steps_per_epoch
validation_steps = nobrainer.dataset.get_steps_per_epoch(
n_volumes=500,
volume_shape=(128,128,128),
block_shape=block_shape,
batch_size=batch_size)
validation_steps
callbacks = [tf.keras.callbacks.ModelCheckpoint(model_path)]
print('Model Training.......')
for e in range(1, 20):
model.fit(
dataset_train,
steps_per_epoch=steps_per_epoch,
validation_data=dataset_evaluate,
validation_steps=validation_steps,
epochs=e+1,
initial_epoch=e,
callbacks=callbacks)
model.save_weights('brainy_nokld.hdf5')
with strategy.scope():
model = bayesian_vnet(input_shape = block_shape+(1,),kernel_size=3,kld =1, activation="relu",padding="SAME")
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-04)
model.compile(optimizer=optimizer,loss=nobrainer.losses.jaccard,metrics=[nobrainer.metrics.dice, nobrainer.metrics.jaccard],)
K.set_value(model.optimizer.lr, 1e-04)
for e in range(20, 40):
model.fit(
dataset_train,
steps_per_epoch=steps_per_epoch,
validation_data=dataset_evaluate,
validation_steps=validation_steps,
epochs=e+1,
initial_epoch=e,
callbacks=callbacks)
model.save_weights('brainy_kld.hdf5')