-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBayesianBrainy_Train_Meshnet.py
98 lines (84 loc) · 2.87 KB
/
BayesianBrainy_Train_Meshnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import nobrainer
import tensorflow as tf
from nobrainer.models.bayesian_vnet import bayesian_vnet
import tensorflow.keras.backend as K
csv_of_filepaths = nobrainer.utils.get_data()
filepaths = nobrainer.io.read_csv(csv_of_filepaths)
train_paths = filepaths[:9]
evaluate_paths = filepaths[9:]
#Convert medical images to TFRecords
invalid = nobrainer.io.verify_features_labels(train_paths, num_parallel_calls=2)
assert not invalid
invalid = nobrainer.io.verify_features_labels(evaluate_paths)
assert not invalid
nobrainer.tfrecord.write(
features_labels=train_paths,
filename_template='data/data-train_shard-{shard:03d}.tfrec',
examples_per_shard=3)
nobrainer.tfrecord.write(
features_labels=evaluate_paths,
filename_template='data/data-evaluate_shard-{shard:03d}.tfrec',
examples_per_shard=1)
# Set parameters
n_classes = 1
batch_size = 2
volume_shape = (256, 256, 256)
block_shape = (64, 64, 64)
n_epochs = None
augment = False
shuffle_buffer_size = 10
num_parallel_calls = 2
# Create and Load Datasets for training and validation
dataset_train = nobrainer.dataset.get_dataset(
file_pattern="data/data-train_shard-*.tfrec",
n_classes=n_classes,
batch_size=batch_size,
volume_shape=volume_shape,
block_shape=block_shape,
n_epochs=n_epochs,
augment=augment,
shuffle_buffer_size=shuffle_buffer_size,
num_parallel_calls=num_parallel_calls,
)
dataset_evaluate = nobrainer.dataset.get_dataset(
file_pattern="data/data-evaluate_shard-*.tfrec",
n_classes=n_classes,
batch_size=batch_size,
volume_shape=volume_shape,
block_shape=block_shape,
n_epochs=1,
augment=False,
shuffle_buffer_size=None,
num_parallel_calls=1,
)
# Compile model
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = variational_meshnet(n_classes=n_classes,input_shape=block_shape+(1,), filters=21, dropout=None, is_monte_carlo=True,receptive_field=37)
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-03)
model.compile(optimizer=optimizer,loss=nobrainer.losses.jaccard,metrics=[nobrainer.metrics.dice, nobrainer.metrics.jaccard],)
steps_per_epoch = nobrainer.dataset.get_steps_per_epoch(
n_volumes=len(train_paths),
volume_shape=(128,128,128),
block_shape=block_shape,
batch_size=batch_size)
steps_per_epoch
validation_steps = nobrainer.dataset.get_steps_per_epoch(
n_volumes=len(evaluate_paths),
volume_shape=(128,128,128),
block_shape=block_shape,
batch_size=batch_size)
validation_steps
callbacks = [tf.keras.callbacks.ModelCheckpoint(model_path)]
print('Model Training.......')
#Training
for e in range(1, 20):
model.fit(
dataset_train,
steps_per_epoch=steps_per_epoch,
validation_data=dataset_evaluate,
validation_steps=validation_steps,
epochs=e+1,
initial_epoch=e,
callbacks=callbacks)
model.save_weights('brainy_nokld.hdf5')