Skip to content

Latest commit

 

History

History
183 lines (149 loc) · 7.65 KB

README.md

File metadata and controls

183 lines (149 loc) · 7.65 KB

Setup

Run pip install git+https://github.com/neuroevolution-ai/NaturalNets.git to add this package to your python environment

Examples

Single training run:

from naturalnets.train import train

configuration = {
    "number_generations": 200,
    "number_validation_runs": 50,
    "number_rounds": 3,
    "maximum_env_seed": 100000,
    "fixed_env_seed": False,
    "environment": {
        "type": "GymMujoco",
        "name": "InvertedDoublePendulum-v2"
    },
    "brain": {
        "type": "CTRNN",
        "delta_t": 0.05,
        "differential_equation": "NaturalNet",
        "number_neurons": 5,
        "v_mask": "dense",
        "w_mask": "dense",
        "t_mask": "dense",
        "clipping_range": 3.0,
        "set_principle_diagonal_elements_of_W_negative": True,
        "optimize_x0": True,
        "alpha": 0.0
    },
    "optimizer": {
        "type": "CmaEsDeap",
        "population_size": 200,
        "sigma": 1.0
    }
}

train(configuration, results_directory="results")

More complex example of a random hyperparameter search. This experiment executes an indefinite number of training runs until it gets actively interrupted:

from naturalnets.train import train
import os
import random
from pathlib import Path

while True:

    environment_configuration = dict()
    environment_configuration["type"] = "GymMujoco"
    environment_configuration["name"] = random.choice(["InvertedDoublePendulum-v2", "InvertedPendulum-v2", "Reacher-v2", "Swimmer-v2", "Hopper-v2", "Walker2d-v2", "HalfCheetah-v2"])

    brain_configuration = dict()
    brain_configuration["type"] = random.choice(["CTRNN", "CTRNN", "CTRNN", "CTRNN", "ELMANNN", "GRUNN", "LSTMNN", "FFNN"])

    if(brain_configuration["type"] == "CTRNN"):
        brain_configuration["differential_equation"] = random.choice(["NaturalNet", "LiHoChow2005"])

        if(brain_configuration["differential_equation"] == "NaturalNet"):
            brain_configuration["set_principle_diagonal_elements_of_W_negative"] = random.choice([False, True])

        elif(brain_configuration["differential_equation"] == "LiHoChow2005"):
            brain_configuration["set_principle_diagonal_elements_of_W_negative"] = False
            brain_configuration["alpha"] = random.choice([0.0, 0.1, 0.01])

        else:
            raise RuntimeError("No valid CTRNN differential equation")

        brain_configuration["delta_t"] = 0.05
        brain_configuration["number_neurons"] = random.choice([5, 10, 20, 50])
        brain_configuration["clipping_range"] = random.choice([1.0, 3.0, float('inf'), float('inf')])
        brain_configuration["optimize_x0"] = random.choice([False, True])

    elif(brain_configuration["type"] == "ELMANNN" or brain_configuration["type"] == "GRUNN" or brain_configuration["type"] == "LSTMNN"):
        brain_configuration["hidden_layer_structure"] = random.choice([[5], [10], [20], [50]])
        brain_configuration["use_bias"] = random.choice([False, True])

    elif(brain_configuration["type"] == "FFNN"):
        brain_configuration["hidden_layers"] = random.choice([[5, 5], [10, 10], [20, 20], [50, 50]])
        brain_configuration["neuron_activation"] = "tanh"
        brain_configuration["neuron_activation_output"] = "tanh"
        brain_configuration["use_bias"] = random.choice([False, True])

    else:
        raise RuntimeError("No valid brain type")

    optimizer_configuration = dict()
    optimizer_configuration["type"] = "CMA-ES-Deap"
    optimizer_configuration["population_size"] = 200
    optimizer_configuration["sigma"] = random.choice([0.5, 1.0, 2.0])

    configuration = dict()
    configuration["number_generations"] = 2500
    configuration["number_validation_runs"] = 50
    configuration["number_rounds"] = 3
    configuration["maximum_env_seed"] = 100000
    configuration["environment"] = environment_configuration
    configuration["brain"] = brain_configuration
    configuration["optimizer"] = optimizer_configuration

    print(configuration)

    # Path of current script
    script_directory = Path(__file__).parent.absolute()

    train(configuration, results_directory=os.path.join(script_directory, 'Simulation_Results'))

Training using GPU

  1. Uninstall deap
  2. Run pip install git+https://github.com/neuroevolution-ai/deap@eigenvalues-on-gpu
  3. Run pip install cupy-cuda101 if you have a GPU with CUDA 10.1 (if you have another version check the CuPy website)
  4. Then the eigenvalue calculation should happen on the GPU

Inspecting Logs using TensorBoard

  1. Make sure TensorBoard is installed with pip install -U -r requirements.txt
  2. On the Terminal run tensorboard --logdir results/ to view all results of the experiments in Tensorboard
    • Alternatively, run tensorboard --logdir EXPLICIT_EXP_DIR, to view the results of a specific experiment, where EXPLICIT_EXP_DIR is the path to that experiment's logs
  3. In a browser, navigate to http://localhost:6006/

Logging to Weights & Biases

  • Create a Weights and Biases account
  • Install it with pip install wandb (it is also in our requirements.txt)
  • Log in by running wandb login, and paste your API key from https://wandb.ai/authorize
  • Optional: Edit the entity and project parameters for the wandb.init() call in train.py
    • These specify where the values are logged, where entity is your WandB username or organization and project is the name of the project in that entity

Using Hyperparameter Sweeps

  • Quick way to initialize hyperparameter searches
  • Copy naturalnets/configurations/sweep_configurations/DefaultSweep.json and edit the new file to confiure the sweep
    • Use the parameters key to configure the training configuration
    • Each key under parameters maps to a key of our training configuration
    • Nested dicts, for example for the environment, brain etc., need to have another parameters key, for example:
      {
          "parameters": {
              ...
              "number_rounds": {"value":  3},
              ...
              "environment": {
                  "parameters": {
                      "type": {"value": "GUIApp"},
                      ...
                  }
              }
          }
      }
    • Each parameter can be configured to have a specific value ("value": SPECIFIC_VALUE), multiple values ("values": [VALUE1, VALUE2, ...] (note the plural values as the key)), or more advanced mathematical distributions, etc. Read more on this in the WandB Documentation
    • Limitation: No conditional configurations can be created, i.e. saying we use BrainX, which requires using ParameterY with a specific value. All parameters are mixed, see also this WandB GitHub issue
  • Create the sweep by running wandb sweep naturalnets/configurations/sweep_configurations/YOUR-SWEEP-CONFIG.json
  • Copy the full sweep path of the form ENTITY/PROJECT/SWEEP_ID
  • Run the sweep agent to start experiments
    • Run PYTHONPATH=$(pwd) python naturalnets/train.py -s ENTITY/PROJECT/SWEEP_ID
    • If you use a grid search, the agent runs experiments until the grid search is finished
    • If you use a random search and want to limit the number of experiments, use -sc NUM_EXPERIMENTS, i.e. PYTHONPATH=$(pwd) python naturalnets/train.py -s ENTITY/PROJECT/SWEEP_ID -sc NUM_EXPERIMENTS

Monkey Testing

  • Run PYTHONPATH=$(pwd) python monkey_tester/monkey_tester.py -c PATH_TO_MONKEY_CONFIG to start the monkey tester
  • A default configuration is found in monkey_tester/configurations/Configuration.json. Details for the parameters are found in the MonkeyTesterCfg class in monkey_tester/monkey_tester.py