-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathalgo_flash.c
104 lines (91 loc) · 2.85 KB
/
algo_flash.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/* PANDAseq -- Assemble paired FASTQ Illumina reads and strip the region between amplification primers.
Copyright (C) 2011-2013 Andre Masella
Based on work by Tanja Magoc and Eric Biggers:
http://ccb.jhu.edu/software/FLASH/
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "pandaseq.h"
#include "prob.h"
#include "table.h"
static double overlap_probability(
void *data,
const panda_qual *forward,
size_t forward_length,
const panda_qual *reverse,
size_t reverse_length,
size_t overlap) {
int sum_quality = 0;
size_t mismatches = 0;
size_t real_overlap = 0;
size_t i;
(void) data;
for (i = 0; i < overlap; i++) {
int findex = forward_length + i - overlap;
int rindex = reverse_length - i - 1;
if (findex < 0 || rindex < 0 || (size_t) findex >= forward_length || (size_t) rindex >= reverse_length)
continue;
panda_nt f = forward[findex].nt;
panda_nt r = reverse[rindex].nt;
if (PANDA_NT_IS_N(f) || PANDA_NT_IS_N(r) || (f & r) == 0) {
char min_quality = forward[findex].qual < reverse[rindex].qual ? forward[findex].qual : reverse[rindex].qual;
mismatches++;
sum_quality += min_quality;
}
real_overlap++;
}
return real_overlap == 0 ? -2 : log(mismatches / real_overlap);
}
static double match_probability(
void *data,
bool match,
char a,
char b) {
int score;
(void) data;
if (match) {
score = (a > b) ? PHREDCLAMP(a) : PHREDCLAMP(b);
} else {
score = PHREDCLAMP(a) - PHREDCLAMP(b);
if (score < 0)
score = -score;
if (score < 2) {
score = 2;
}
}
return qual_score[score];
}
static PandaAlgorithm from_string(
const char *argument) {
if (argument != NULL) {
fprintf(stderr, "No arguments allowed: %s\n", argument);
return NULL;
}
return panda_algorithm_flash_new();
}
const struct panda_algorithm_class panda_algorithm_flash_class = {
.data_size = 0,
.name = "flash",
.create = from_string,
.data_destroy = NULL,
.overlap_probability = (PandaComputeOverlap) overlap_probability,
.match_probability = (PandaComputeMatch) match_probability,
.prob_unpaired = qual_nn_simple_bayesian,
};
PandaAlgorithm panda_algorithm_flash_new(
void) {
return panda_algorithm_new(&panda_algorithm_flash_class);
}